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We propose a new class of support vector algorithms for regression and
classi�cation. In these algorithms, a parameter º lets one effectively con-
trol the number of support vectors. While this can be useful in its own
right, the parameterization has the additional bene�t of enabling us to
eliminate one of the other free parameters of the algorithm: the accuracy
parameter e in the regression case, and the regularization constant C in the
classi�cation case. We describe the algorithms, give some theoretical re-
sults concerning the meaning and the choice ofº, and report experimental
results.

1 Introduction

Support vector (SV) machines comprise a new class of learning algorithms,
motivated by results of statistical learning theory (Vapnik, 1995). Originally
developed for pattern recognition (Vapnik & Chervonenkis, 1974; Boser,
Guyon, & Vapnik, 1992), they represent the decision boundary in terms of
a typically small subset (Schölkopf, Burges, & Vapnik, 1995) of all training
examples, called the support vectors. In order for this sparseness property
to carry over to the case of SV Regression, Vapnik devised the so-called
e-insensitive loss function,

|y ¡ f (x)|e Dmaxf0, |y ¡ f (x)| ¡ eg, (1.1)

which does not penalize errors below some e > 0, chosen a priori. His
algorithm, which we will henceforth call e-SVR, seeks to estimate functions,

f (x) D (w ¢ x) C b, w, x 2 RN, b 2 R, (1.2)
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based on independent and identically distributed (i.i.d.) data,

(x1, y1), . . . , (x`, y )̀ 2 RN £ R. (1.3)

Here, RN is the space in which the input patterns live but most of the fol-
lowing also applies for inputs from a set X . The goal of the learning process
is to �nd a function f with a small risk (or test error),

R[ f ] D
Z

l( f, x, y) dP(x, y), (1.4)

where P is the probability measure, which is assumed to be responsible for
the generation of the observations (see equation 1.3) and l is a loss func-
tion, for example, l( f, x, y) D ( f (x) ¡ y)2, or many other choices (Smola &
Schölkopf, 1998). The particular loss function for which we would like to
minimize equation 1.4 depends on the speci�c regression estimation prob-
lem at hand. This does not necessarily have to coincide with the loss function
used in our learning algorithm. First, there might be additional constraints
that we would like our regression estimation to satisfy, for instance, that it
have a sparse representation in terms of the training data. In the SVcase, this
is achieved through the insensitive zone in equation 1.1. Second, we cannot
minimize equation 1.4 directly in the �rst place, since we do not know P.
Instead, we are given the sample, equation 1.3, and we try to obtain a small
risk by minimizing the regularized risk functional,

1
2

kwk2 C C ¢ Re
emp[ f ]. (1.5)

Here, kwk2 is a term that characterizes the model complexity,

Re
emp[ f ] :D

1
`

X̀

iD1

|yi ¡ f (xi)|e, (1.6)

measures the e-insensitive training error, and C is a constant determining
the trade-off. In short, minimizing equation 1.5 captures the main insight
of statistical learning theory, stating that in order to obtain a small risk, one
needs to control both training error and model complexity—that is, explain
the data with a simple model.

The minimization of equation 1.5 is equivalent to the following con-
strained optimization problem (see Figure 1):

minimize t (w, »(¤)) D 1
2

kwk2 C C ¢ 1
`

X̀

iD1

(ji C j ¤
i ), (1.7)



New Support Vector Algorithms 1209

Figure 1: In SV regression, a desired accuracy e is speci�ed a priori. It is then
attempted to �t a tube with radius e to the data. The trade-off between model
complexity and points lying outside the tube (with positive slack variablesj ) is
determined by minimizing the expression 1.5.

subject to ((w ¢ xi) C b) ¡ yi · e C ji (1.8)

yi ¡ ((w ¢ xi) C b) · e C j ¤
i (1.9)

j
(¤)
i ¸ 0. (1.10)

Here and below, it is understood that i D1, . . . , ,̀ and that boldface Greek
letters denote -̀dimensional vectors of the corresponding variables; (¤) is a
shorthand implying both the variables with and without asterisks.

By using Lagrange multiplier techniques, one can show (Vapnik, 1995)
that this leads to the following dual optimization problem. Maximize

W(®, ®¤) D ¡e
X̀

iD1

(a¤
i C ai) C

X̀

iD1

(a¤
i ¡ ai)yi

¡ 1
2

X̀

i, jD1

(a¤
i ¡ ai)(a¤

j ¡ aj)(xi ¢ xj) (1.11)

subject to
X̀

iD1

(ai ¡ a¤
i ) D0 (1.12)

a
(¤)
i 2

h
0, C

`

i
. (1.13)

The resulting regression estimates are linear; however, the setting can be
generalized to a nonlinear one by using the kernel method. As we will use
precisely this method in the next section, we shall omit its exposition at this
point.
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To motivate the new algorithm that we shall propose, note that the pa-
rameter e can be useful if the desired accuracy of the approximation can be
speci�ed beforehand. In some cases, however, we want the estimate to be as
accurate as possible without having to commit ourselves to a speci�c level
of accuracy a priori. In this work, we �rst describe a modi�cation of the e-
SVR algorithm, called º-SVR, which automatically minimizes e. Following
this, we present two theoretical results onº-SVR concerning the connection
to robust estimators (section 3) and the asymptotically optimal choice of the
parameter º (section 4). Next, we extend the algorithm to handle parametric
insensitivity models that allow taking into account prior knowledge about
heteroscedasticity of the noise. As a bridge connecting this �rst theoreti-
cal part of the article to the second one, we then present a de�nition of a
margin that both SV classi�cation and SV regression algorithms maximize
(section 6). In view of this close connection between both algorithms, it is
not surprising that it is possible to formulate also a º-SV classi�cation al-
gorithm. This is done, including some theoretical analysis, in section 7. We
conclude with experiments and a discussion.

2 º-SV Regression

To estimate functions (see equation 1.2) from empirical data (see equa-
tion 1.3) we proceed as follows (Schölkopf, Bartlett, Smola, & Williamson,
1998). At each point xi, we allow an error of e. Everything above e is cap-
tured in slack variables j

(¤)
i , which are penalized in the objective function

via a regularization constant C, chosen a priori (Vapnik, 1995). The size of
e is traded off against model complexity and slack variables via a constant
º ¸ 0:

minimize t (w, »
(¤) , e) D

1
2

kwk2 C C ¢ (ºe C
1
`

X̀

iD1

(ji C j ¤
i )

!

(2.1)

subject to ((w ¢ xi) C b) ¡ yi · e C ji (2.2)

yi ¡ ((w ¢ xi) C b) · e C j ¤
i (2.3)

j
(¤)
i ¸ 0, e ¸ 0. (2.4)

For the constraints, we introduce multipliers a
(¤)
i ,g(¤)

i , b ¸ 0, and obtain the
Lagrangian

L(w, b, ®(¤) , b, »
(¤) , e, ´(¤))

D 1
2

kwk2 C Cºe C
C
`

X̀

iD1

(ji C j ¤
i ) ¡ be ¡

X̀

iD1

(giji C g¤
i j

¤
i )



New Support Vector Algorithms 1211

¡
X̀

iD1

ai(ji C yi ¡ (w ¢ xi) ¡ b C e)

¡
X̀

iD1

a¤
i (j ¤

i C (w ¢ xi) C b ¡ yi C e). (2.5)

To minimize the expression 2.1, we have to �nd the saddle point of L—that
is, minimize over the primal variables w, e, b,j (¤)

i and maximize over the
dual variables a

(¤)
i , b,g(¤)

i . Setting the derivatives with respect to the primal
variables equal to zero yields four equations:

w D
X

i
(a¤

i ¡ ai)xi (2.6)

C ¢º ¡
X

i
(ai C a¤

i ) ¡ b D0 (2.7)

X̀

iD1

(ai ¡ a¤
i ) D0 (2.8)

C
`

¡ a
(¤)
i ¡ g

(¤)
i D0. (2.9)

In the SV expansion, equation 2.6, only those a
(¤)
i will be nonzero that cor-

respond to a constraint, equations 2.2 or 2.3, which is precisely met; the
correspondingpatterns are called support vectors. This is due to the Karush-
Kuhn-Tucker (KKT) conditions that apply to convex constrained optimiza-
tion problems (Bertsekas, 1995). If we write the constraints as g(xi, yi) ¸
0, with corresponding Lagrange multipliers ai, then the solution satis�es
ai ¢ g(xi, yi) D0 for all i.

Substituting the above four conditions into L leads to another optimiza-
tion problem, called the Wolfe dual. Before stating it explicitly, we carry
out one further modi�cation. Following Boser et al. (1992), we substitute a
kernel k for the dot product, corresponding to a dot product in some feature
space related to input space via a nonlinear map W,

k(x, y) D (W(x) ¢ W(y)). (2.10)

By using k, we implicitly carry out all computations in the feature space that
W maps into, which can have a very high dimensionality. The feature space
has the structure of a reproducing kernel Hilbert space (Wahba, 1999; Girosi,
1998; Schölkopf, 1997) and hence minimization of kwk2 can be understood in
the context of regularization operators (Smola, Schölkopf, & Müller, 1998).

The method is applicable whenever an algorithm can be cast in terms of
dot products (Aizerman, Braverman, & Rozonoer, 1964; Boser et al., 1992;
Schölkopf, Smola, & Müller, 1998). The choice of k is a research topic in its
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own right that we shall not touch here (Williamson, Smola, & Schölkopf,
1998; Schölkopf, Shawe-Taylor, Smola, & Williamson, 1999); typical choices
include gaussian kernels, k(x, y) D exp(¡kx ¡ yk2 /(2s2)) and polynomial
kernels, k(x, y) D (x ¢ y)d (s > 0, d 2 N).

Rewriting the constraints, noting that b, g(¤)
i ¸ 0 do not appear in the

dual, we arrive at the º-SVR optimization problem: for º ¸ 0, C > 0,

maximize W(®(¤)) D
X̀

iD1

(a¤
i ¡ ai)yi

¡ 1
2

X̀

i, jD1

(a¤
i ¡ ai)(a¤

j ¡ aj)k(xi, xj) (2.11)

subject to
X̀

iD1

(ai ¡ a¤
i ) D0 (2.12)

a
(¤)
i 2

h
0, C

`

i
(2.13)

X̀

iD1

(ai C a¤
i ) · C ¢º. (2.14)

The regression estimate then takes the form (cf. equations 1.2, 2.6, and 2.10),

f (x) D
X̀

iD1

(a¤
i ¡ ai)k(xi, x) C b, (2.15)

where b (and e) can be computed by taking into account that equations 2.2
and 2.3 (substitution of

P
j(a

¤
j ¡ aj)k(xj, x) for (w ¢ x) is understood; cf.

equations 2.6 and 2.10) become equalities with j
(¤)
i D 0 for points with

0 < a
(¤)
i < C / ,̀ respectively, due to the KKT conditions.

Before we give theoretical results explaining the signi�cance of the pa-
rameter º, the following observation concerning e is helpful. If º > 1, then
e D 0, since it does not pay to increase e (cf. equation 2.1). If º · 1, it can
still happen that e D 0—for example, if the data are noise free and can be
perfectly interpolated with a low-capacity model. The case e D0, however,
is not what we are interested in; it corresponds to plain L1-loss regression.

We will use the term errors to refer to training points lying outside the
tube1 and the term fraction of errors or SVs to denote the relative numbers of

1 For N > 1, the “tube” should actually be called a slab—the region between two
parallel hyperplanes.
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errors or SVs (i.e., divided by )̀. In this proposition, we de�ne the modulus
of absolute continuity of a function f as the function 2 (d ) D sup

P
i | f (bi) ¡

f (ai)| , where the supremum is taken over all disjoint intervals (ai, bi) with
ai < bi satisfying

P
i(bi ¡ ai) < d . Loosely speaking, the condition on the

conditional density of y given x asks that it be absolutely continuous “on
average.”

Proposition 1. Suppose º-SVR is applied to some data set, and the resulting e
is nonzero. The following statements hold:

i. º is an upper bound on the fraction of errors.

ii. º is a lower bound on the fraction of SVs.

iii. Suppose the data (see equation 1.3) were generated i.i.d. from a distribution
P(x, y) D P(x)P(y|x) with P(y|x) continuous and the expectation of the
modulus of absolute continuity of its density satisfying limd!0 E2 (d ) D 0.
With probability 1, asymptotically, º equals both the fraction of SVs and the
fraction of errors.

Proof. Ad (i). The constraints, equations 2.13 and 2.14, imply that at most
a fraction º of all examples can have a

(¤)
i DC/ .̀ All examples with j

(¤)
i > 0

(i.e., those outside the tube) certainly satisfy a
(¤)
i D C /` (if not, a

(¤)
i could

grow further to reduce j
(¤)
i ).

Ad (ii). By the KKT conditions, e > 0 implies b D0. Hence, equation 2.14
becomes an equality (cf. equation 2.7).2 Since SVs are those examples for
which 0 < a

(¤)
i · C / ,̀ the result follows (using ai ¢ a¤

i D 0 for all i; Vapnik,
1995).

Ad (iii). The strategy of proof is to show that asymptotically, the proba-
bility of a point is lying on the edge of the tube vanishes. The condition on
P(y|x) means that

sup
f,t

EP
¡
| f (x) C t ¡ y| < c

x
¢

< d (c ) (2.16)

for some function d (c ) that approaches zero as c ! 0. Since the class of
SV regression estimates f has well-behaved covering numbers, we have
(Anthony & Bartlett, 1999, chap. 21) that for all t,

Pr (sup
f

³
OP`(| f (x)C t ¡ y| < c /2) < P(| f (x)C t¡y| < c )

´
> a

!
< c1c¡`

2 ,

2 In practice, one can alternatively work with equation 2.14 as an equality constraint.
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where OP` is the sample-based estimate of P (that is, the proportion of points
that satisfy | f (x)¡yC t| < c ), and c1, c2 may depend onc and a. Discretizing
the values of t, taking the union bound, and applying equation 2.16 shows
that the supremum over f and t of OP`( f (x) ¡ y C t D0) converges to zero in
probability. Thus, the fraction of points on the edge of the tube almost surely
converges to 0. Hence the fraction of SVs equals that of errors. Combining
statements i and ii then shows that both fractions converge almost surely
to º.

Hence, 0 · º · 1 can be used to control the number of errors (note that for
º ¸ 1, equation 2.13 implies 2.14, since ai ¢ a¤

i D 0 for all i (Vapnik, 1995)).
Moreover, since the constraint, equation 2.12, implies that equation 2.14 is
equivalent to

P
i a

(¤)
i · Cº/2, we conclude that proposition 1 actually holds

for the upper and the lower edges of the tube separately, with º/2 each.
(Note that by the same argument, the number of SVs at the two edges of the
standard e-SVR tube asymptotically agree.)

A more intuitive, albeit somewhat informal, explanation can be given
in terms of the primal objective function (see equation 2.1). At the point
of the solution, note that if e > 0, we must have (@/@e)t (w, e) D 0, that
is, º C (@/@e)Re

emp D 0, hence º D ¡(@/@e)Re
emp. This is greater than or

equal to the fraction of errors, since the points outside the tube certainly
do contribute to a change in Remp when e is changed. Points at the edge of
the tube possibly might also contribute. This is where the inequality comes
from.

Note that this does not contradict our freedom to choose º > 1. In that
case, e D0, since it does not pay to increase e (cf. equation 2.1).

Let us brie�y discuss howº-SVR relates to e-SVR (see section 1). Both al-
gorithms use the e-insensitive loss function, but º-SVR automatically com-
putes e. In a Bayesian perspective, this automatic adaptation of the loss
function could be interpreted as adapting the error model, controlled by the
hyperparameterº. Comparing equation 1.11 (substitution of a kernel for the
dot product is understood) and equation 2.11, we note that e-SVR requires
an additional term, ¡e

P`
iD1(a¤

i C ai), which, for �xed e > 0, encourages
that some of the a

(¤)
i will turn out to be 0. Accordingly, the constraint (see

equation 2.14), which appears inº-SVR, is not needed. The primal problems,
equations 1.7 and 2.1, differ in the term ºe. If º D 0, then the optimization
can grow e arbitrarily large; hence zero empirical risk can be obtained even
when all as are zero.

In the following sense, º-SVR includes e-SVR. Note that in the general
case, using kernels, Nw is a vector in feature space.

Proposition 2. If º-SVR leads to the solution Ne, Nw, Nb, then e-SVR with e set a
priori to Ne, and the same value of C, has the solution Nw, Nb.
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Proof. If we minimize equation 2.1, then �x e and minimize only over the
remaining variables. The solution does not change.

3 The Connection to Robust Estimators

Using the e-insensitive loss function, only the patterns outside the e-tube
enter the empirical risk term, whereas the patterns closest to the actual
regression have zero loss. This, however, does not mean that it is only the
outliers that determine the regression. In fact, the contrary is the case.

Proposition 3 (resistance of SV regression). Using support vector regression
with the e-insensitive loss function (see equation 1.1), local movements of target
values of points outside the tube do not in�uence the regression.

Proof. Shifting yi locally does not change the status of (xi, yi) as being a
point outside the tube. Then the dual solution ®(¤) is still feasible; it satis�es
the constraints (the point still has a

(¤)
i DC / )̀. Moreover, the primal solution,

withji transformed according to the movement of yi, is also feasible. Finally,
the KKT conditions are still satis�ed, as still a

(¤)
i D C/ .̀ Thus (Bertsekas,

1995), ®(¤) is still the optimal solution.

The proof relies on the fact that everywhere outside the tube, the upper
bound on the a

(¤)
i is the same. This is precisely the case if the loss func-

tion increases linearly ouside the e-tube (cf. Huber, 1981, for requirements
on robust cost functions). Inside, we could use various functions, with a
derivative smaller than the one of the linear part.

For the case of the e-insensitive loss, proposition 3 implies that essentially,
the regression is a generalization of an estimator for the mean of a random
variable that does the following:

� Throws away the largest and smallest examples (a fractionº/2 of either
category; in section 2, it is shown that the sum constraint, equation 2.12,
implies that proposition 1 can be applied separately for the two sides,
using º/2).

� Estimates the mean by taking the average of the two extremal ones of
the remaining examples.

This resistance concerning outliers is close in spirit to robust estima-
tors like the trimmed mean. In fact, we could get closer to the idea of the
trimmed mean, which �rst throws away the largest and smallest points
and then computes the mean of the remaining points, by using a quadratic
loss inside the e-tube. This would leave us with Huber’s robust loss func-
tion.
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Note, moreover, that the parameter º is related to the breakdown point
of the corresponding robust estimator (Huber, 1981). Because it speci�es
the fraction of points that may be arbitrarily bad outliers, º is related to the
fraction of some arbitrary distribution that may be added to a known noise
model without the estimator failing.

Finally, we add that by a simple modi�cation of the loss function (White,
1994)—weighting the slack variables »

(¤) above and below the tube in the tar-
get function, equation 2.1, by 2l and 2(1¡l), withl 2 [0, 1]—respectively—
one can estimate generalized quantiles. The argument proceeds as follows.
Asymptotically, all patterns have multipliers at bound (cf. proposition 1).
Thel , however, changes the upper bounds in the box constraints applying
to the two different types of slack variables to 2Cl /` and 2C(1 ¡ l) / ,̀ re-
spectively. The equality constraint, equation 2.8, then implies that (1 ¡ l)
and l give the fractions of points (out of those which are outside the tube)
that lie on the two sides of the tube, respectively.

4 Asymptotically Optimal Choice of º

Using an analysis employing tools of information geometry (Murata,
Yoshizawa, & Amari, 1994; Smola, Murata, Schölkopf, & Müller, 1998), we
can derive the asymptotically optimal º for a given class of noise models in
the sense of maximizing the statistical ef�ciency.3

Remark. Denote p a density with unit variance,4 and P a family of noise
models generated from P by P :D fp|p D 1

s
P( y

s
), s > 0g. Moreover

assume that the data were generated i.i.d. from a distribution p(x, y) D
p(x)p(y ¡ f (x)) with p(y ¡ f (x)) continuous. Under the assumption that SV
regression produces an estimate Of converging to the underlying functional
dependency f , the asymptotically optimal º, for the estimation-of-location-
parameter model of SV regression described in Smola, Murata, Schölkopf,
& Müller (1998), is

º D 1 ¡
Z e

¡e
P(t) dt where

e :D argmin
t

1
(P(¡t ) C P(t))2

¡
1 ¡

Z t

¡t

P(t) dt
¢

(4.1)

3 This section assumes familiarity with some concepts of information geometry.A more
complete explanation of the model underlying the argument is given in Smola, Murata,
Schölkopf, & Müller (1998) and can be downloaded from http://svm.�rst.gmd.de.

4 is a prototype generating the class of densities . Normalization assumptions are
made for ease of notation.

http://svm.first.gmd.de.
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To see this, note that under the assumptions stated above, the probability
of a deviation larger than e, Prf|y ¡ Of (x)| > eg, will converge to

Pr
©
|y ¡ f (x)| > e

ª
D

Z

£fRn[¡e,e]g
p(x)p(j ) dx dj

D 1 ¡
Z e

¡e
p(j ) dj . (4.2)

This is also the fraction of samples that will (asymptotically) become SVs
(proposition 1, iii). Therefore an algorithm generating a fraction º D 1 ¡R e

¡e p(j ) dj SVs will correspond to an algorithm with a tube of size e. The
consequence is that given a noise model p(j ), one can compute the optimal
e for it, and then, by using equation 4.2, compute the corresponding optimal
value º.

To this end, one exploits the linear scaling behavior between the standard
deviation s of a distribution p and the optimal e. This result, established
in Smola, Murata, Schölkopf, & Müller (1998) and Smola (1998), cannot be
proved here; instead, we shall merely try to give a �avor of the argument.
The basic idea is to consider the estimation of a location parameter using the
e-insensitive loss, with the goal of maximizing the statistical ef�ciency. Us-
ing the Cramér-Rao bound and a result of Murata et al. (1994), the ef�ciency
is found to be

e
³e

s

´
D

Q2

GI
. (4.3)

Here, I is the Fisher information, while Q and G are information geometrical
quantities computed from the loss function and the noise model.

This means that one only has to consider distributions of unit variance,
say, P, to compute an optimal value of º that holds for the whole class of
distributions P. Using equation 4.3, one arrives at

1
e(e)

/
G
Q2 D

1
(P(¡e) C P(e))2

¡
1 ¡

Z e

¡e
P(t) dt

¢
. (4.4)

The minimum of equation 4.4 yields the optimal choice of e, which allows
computation of the correspondingº and thus leads to equation 4.1.

Consider now an example: arbitrary polynomial noise models (/ e¡|j | p )
with unit variance can be written as

P(j ) D 1
2

r
C(3 /p)
C(1 /p)

p
C

¡
1 /p

¢ exp(¡(
r

C(3 /p)
C(1 /p) |j |

!p!
(4.5)

where C denotes the gamma function. Table 1 shows the optimal value of
º for different polynomial degrees. Observe that the more “lighter-tailed”
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Table 1: Optimal º for Various Degrees of Polynomial Additive Noise.

Polynomial degree p 1 2 3 4 5 6 7 8

Optimal º 1.00 0.54 0.29 0.19 0.14 0.11 0.09 0.07

the distribution becomes, the smaller º are optimal—that is, the tube width
increases. This is reasonable as only for very long tails of the distribution
(data with many outliers) it appears reasonable to use an early cutoff on
the in�uence of the data (by basically giving all data equal in�uence via
ai DC / )̀. The extreme case of Laplacian noise (º D1) leads to a tube width
of 0, that is, to L1 regression.

We conclude this section with three caveats: �rst, we have only made
an asymptotic statement; second, for nonzero e, the SV regression need
not necessarily converge to the target f : measured using | .|e, many other
functions are just as good as f itself; third, the proportionality between e

and s has only been established in the estimation-of-location-parameter
context, which is not quite SV regression.

5 Parametric Insensitivity Models

Wenow return to the algorithm described in section 2. We generalized e-SVR
by estimating the width of the tube rather than taking it as given a priori.
What we have so far retained is the assumption that the e-insensitive zone
has a tube (or slab) shape. We now go one step further and use parametric
models of arbitrary shape. This can be useful in situations where the noise
is heteroscedastic, that is, where it depends on x.

Let ff (¤)
q g (here and below, q D 1, . . . , p is understood) be a set of 2p

positive functions on the input space X . Consider the following quadratic
program: for given º

(¤)
1 , . . . , º(¤)

p ¸ 0, minimize

t (w, »(¤) , "(¤)) D kwk2 /2

C C ¢

0

@
pX

qD1

(ºqeq C º¤
q e¤

q ) C
1
`

X̀

iD1

(ji C j ¤
i )

1

A (5.1)

subject to ((w ¢ xi) C b) ¡ yi ·
X

q
eqfq(xi) C ji (5.2)

yi ¡ ((w ¢ xi) C b) ·
X

q
e¤

qf ¤
q (xi) C j ¤

i (5.3)

j
(¤)
i ¸ 0, e(¤)

q ¸ 0. (5.4)
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A calculation analogous to that in section 2 shows that the Wolfe dual con-
sists of maximizing the expression 2.11 subject to the constraints 2.12 and
2.13, and, instead of 2.14, the modi�ed constraints, still linear in ®(¤),

X̀

iD1

a
(¤)
i f

(¤)
q (xi) · C ¢º(¤)

q . (5.5)

In the experiments in section 8, we use a simpli�ed version of this opti-
mization problem, where we drop the termº¤

q e¤
q from the objective function,

equation 5.1, and use eq and fq in equation 5.3. By this, we render the prob-
lem symmetric with respect to the two edges of the tube. In addition, we
use p D1. This leads to the same Wolfe dual, except for the last constraint,
which becomes (cf. equation 2.14),

X̀

iD1

(ai C a¤
i )f(xi) · C ¢º. (5.6)

Note that the optimization problem of section 2 can be recovered by using
the constant function f ´ 1.5

The advantage of this setting is that since the same º is used for both
sides of the tube, the computation of e, b is straightforward: for instance, by
solving a linear system, using two conditions as those described following
equation 2.15. Otherwise, general statements are harder to make; the linear
system can have a zero determinant, depending on whether the functions
f

(¤)
p , evaluated on the xi with 0 < a

(¤)
i < C / ,̀ are linearly dependent. The

latter occurs, for instance, if we use constant functions f (¤) ´ 1. In this
case, it is pointless to use two different values º, º¤; for the constraint (see
equation 2.12) then implies that both sums

P`
iD1 a

(¤)
i will be bounded by

C ¢ minfº,º¤g. We conclude this section by giving, without proof, a gener-
alization of proposition 1 to the optimization problem with constraint (see
equation 5.6):

Proposition 4. Suppose we run the above algorithm on a data set with the result
that e > 0. Then

i. º`P
i
f (xi)

is an upper bound on the fraction of errors.

ii. º`P
i
f (xi)

is an upper bound on the fraction of SVs.

5 Observe the similarity to semiparametric SV models (Smola, Frieß, & Schölkopf,
1999) where a modi�cation of the expansion of f led to similar additional constraints. The
important difference in the present setting is that the Lagrange multipliers ai and a¤

i are
treated equally and not with different signs, as in semiparametric modeling.
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iii. Suppose the data in equation 1.3 were generated i.i.d. from a distribution
P(x, y) D P(x)P(y|x) with P(y|x) continuous and the expectation of its
modulus of continuity satisfying limd!0 E2 (d) D 0. With probability 1,
asymptotically, the fractions of SVs and errors equal º ¢ (

R
f(x) d QP(x))¡1,

where QP is the asymptotic distribution of SVs over x.

6 Margins in Regression and Classi�cation

The SV algorithm was �rst proposed for the case of pattern recognition
(Boser et al., 1992), and then generalized to regression (Vapnik, 1995). Con-
ceptually, however, one can take the view that the latter case is actually the
simpler one, providing a posterior justi�cation as to why we started this
article with the regression case. To explain this, we will introduce a suitable
de�nition of a margin that is maximized in both cases.

At �rst glance, the two variants of the algorithm seem conceptually dif-
ferent. In the case of pattern recognition, a margin of separation between
two pattern classes is maximized, and the SVs are those examples that lie
closest to this margin. In the simplest case, where the training error is �xed
to 0, this is done by minimizing kwk2 subject to yi ¢ ((w ¢ xi) C b) ¸ 1 (note
that in pattern recognition, the targets yi are in f§ 1g).

In regression estimation, on the other hand, a tube of radius e is �tted to
the data, in the space of the target values, with the property that it corre-
sponds to the �attest function in feature space. Here, the SVs lie at the edge
of the tube. The parameter e does not occur in the pattern recognition case.

We will show how these seemingly different problems are identical (cf.
also Vapnik, 1995; Pontil, Rifkin, & Evgeniou, 1999), how this naturally leads
to the concept of canonical hyperplanes (Vapnik, 1995), and how it suggests
different generalizations to the estimation of vector-valued functions.

De�nition 1 (e-margin). Let (E, k.kE), (F, k.kF) be normed spaces, and X ½ E.
We de�ne the e-margin of a function f : X ! F as

me( f ) :D inffkx ¡ ykE: x, y 2 X , k f (x) ¡ f (y)kF ¸ 2eg. (6.1)

me( f ) can be zero, even for continuous functions, an example being f (x) D
1 /x on X DRC . There, me( f ) D0 for all e > 0.

Note that the e-margin is related (albeit not identical) to the traditional
modulus of continuity of a function: given d > 0, the latter measures the
largest difference in function values that can be obtained using points within
a distanced in E.

The following observations characterize the functions for which the mar-
gin is strictly positive.

Lemma 1 (uniformly continuous functions). With the above notations,
me( f ) is positive for all e > 0 if and only if f is uniformly continuous.
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Proof. By de�nition of me, we have

¡
k f (x) ¡ f (y)kF ¸ 2e H) kx ¡ ykE ¸ me( f )

¢
(6.2)

()
¡
kx ¡ ykE < me( f ) H) k f (x) ¡ f (y)kF < 2e

¢
, (6.3)

that is, if me( f ) > 0, then f is uniformly continuous. Similarly, if f is uni-
formly continuous, then for each e > 0, we can �nd a d > 0 such that
k f (x) ¡ f (y)kF ¸ 2e implies kx ¡ ykE ¸ d . Since the latter holds uniformly,
we can take the in�mum to get me( f ) ¸ d > 0.

We next specialize to a particular set of uniformly continuous functions.

Lemma 2 (Lipschitz-continuous functions). If there exists some L > 0 such
that for all x, y 2 X , k f (x) ¡ f (y)kF · L ¢ kx ¡ ykE, then me ¸ 2e

L .

Proof. Take the in�mum over kx ¡ ykE ¸ k f (x)¡ f (y)kF

L ¸ 2e
L .

Example 1 (SV regression estimation). Suppose that E is endowed with a dot
product (. ¢ .) (generating the norm k.kE). For linear functions (see equation 1.2)
the margin takes the form me( f ) D 2e

kwk . To see this, note that since | f (x) ¡ f (y)| D
|(w ¢ (x ¡ y))| , the distance kx ¡ yk will be smallest given | (w ¢ (x ¡ y))| D 2e,
when x ¡ y is parallel to w (due to Cauchy-Schwartz), i.e. if x ¡ y D§ 2ew /kwk2.
In that case, kx ¡ yk D 2e /kwk. For �xed e > 0, maximizing the margin hence
amounts to minimizing kwk, as done in SV regression: in the simplest form (cf.
equation 1.7 without slack variables ji) the training on data (equation 1.3) consists
of minimizing kwk2 subject to

| f (xi) ¡ yi| · e. (6.4)

Example 2 (SV pattern recognition; see Figure 2). We specialize the setting
of example 1 to the case where X D fx1, . . . , x`g. Then m1( f ) D 2

kwk is equal to
the margin de�ned for Vapnik’s canonical hyperplane (Vapnik, 1995). The latter is
a way in which, given the data set X , an oriented hyperplane in E can be uniquely
expressed by a linear function (see equation 1.2) requiring that

minf| f (x)| : x 2 X g D1. (6.5)

Vapnik gives a bound on the VC-dimension of canonical hyperplanes in terms of
kwk. An optimal margin SV machine for pattern recognition can be constructed
from data,

(x1, y1), . . . , (x ,̀ y`) 2 X £ f§ 1g (6.6)
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Figure 2: 1D toy problem. Separate x from o. The SV classi�cation algorithm
constructs a linear function f (x) D w ¢ x C b satisfying equation 6.5 (e D 1). To
maximize the margin me( f ), one has to minimize |w| .

as follows (Boser et al., 1992):

minimize kwk2 subject to yi ¢ f (xi) ¸ 1. (6.7)

The decision function used for classi�cation takes the form

f ¤(x) D sgn((w ¢ x) C b). (6.8)

The parameter e is super�uous in pattern recognition, as the resulting decision
function,

f ¤(x) D sgn((w ¢ x) C b), (6.9)

will not change if we minimize kwk2 subject to

yi ¢ f (xi) ¸ e. (6.10)

Finally, to understand why the constraint (see equation 6.7) looks different from
equation 6.4 (e.g., one is multiplicative, the other one additive), note that in re-
gression, the points (xi , yi) are required to lie within a tube of radius e, whereas in
pattern recognition, they are required to lie outside the tube (see Figure 2), and on
the correct side. For the points on the tube, we have 1 Dyi ¢ f (xi) D1¡ | f (xi) ¡yi| .

So far, we have interpreted known algorithms only in terms of maxi-
mizing me. Next, we consider whether we can use the latter as a guide for
constructing more general algorithms.

Example 3 (SV regression for vector-valued functions). Assume E D RN.
For linear functions f (x) DWx C b, with W being an N £N matrix, and b 2 RN,
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we have, as a consequence of lemma 1,

me( f ) ¸ 2e

kWk , (6.11)

where kWk is any matrix norm of W that is compatible (Horn & Johnson, 1985)
with k.kE. If the matrix norm is the one induced by k.kE, that is, there exists
a unit vector z 2 E such that kWzkE D kWk, then equality holds in 6.11.
To see the latter, we use the same argument as in example 1, setting x ¡ y D
2ez /kWk.

For the Hilbert-Schmidt norm kWk2 D
qPN

i, jD1 W2
ij, which is compatible with

the vector norm k.k2, the problem of minimizing kWk subject to separate constraints
for each output dimension separates into N regression problems.

In Smola, Williamson, Mika, & Schölkopf (1999), it is shown that one can
specify invariance requirements, which imply that the regularizers act on the output
dimensions separately and identically (i.e., in a scalar fashion). In particular, it
turns out that under the assumption of quadratic homogeneity and permutation
symmetry, the Hilbert-Schmidt norm is the only admissible one.

7 º-SV Classi�cation

We saw that º-SVR differs from e-SVR in that it uses the parameters º and
C instead of e and C. In many cases, this is a useful reparameterization of
the original algorithm, and thus it is worthwhile to ask whether a similar
change could be incorporated in the original SV classi�cation algorithm
(for brevity, we call it C-SVC). There, the primal optimization problem is to
minimize (Cortes & Vapnik, 1995)

t(w, ») D
1
2

kwk2 C C
`

X

i
ji (7.1)

subject to

yi ¢ ((xi ¢ w) C b) ¸ 1 ¡ ji , ji ¸ 0. (7.2)

The goal of the learning process is to estimate a function f ¤ (see equation 6.9)
such that the probability of misclassi�cation on an independent test set, the
risk R[ f ¤], is small.6

Here, the only parameter that we can dispose of is the regularization
constant C. To substitute it by a parameter similar to the º used in the
regression case, we proceed as follows. As a primal problem forº-SVC, we

6 Implicitly we make use of the f0, 1g loss function; hence the risk equals the probability
of misclassi�cation.



1224 B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett

consider the minimization of

t (w, »,r ) D
1
2

kwk2 ¡ºr C
1
`

X

i
ji (7.3)

subject to (cf. equation 6.10)

yi ¢ ((xi ¢ w) C b) ¸ r ¡ji, (7.4)

ji ¸ 0, r ¸ 0. (7.5)

For reasons we shall expain, no constant C appears in this formulation.
To understand the role of r , note that for » D 0, the constraint (see 7.4)
simply states that the two classes are separated by the margin 2r /kwk (cf.
example 2).

To derive the dual, we consider the Lagrangian

L(w, », b,r , ®, ¯,d) D 1
2

kwk2 ¡ºr C
1
`

X

i
ji

¡
X

i
(ai(yi((xi ¢ w) C b) ¡ r C ji) C biji)

¡dr , (7.6)

using multipliers ai, bi,d ¸ 0. This function has to be mimimized with re-
spect to the primal variables w, », b, r and maximized with respect to the
dual variables ®, ¯,d . To eliminate the former, we compute the correspond-
ing partial derivatives and set them to 0, obtaining the following conditions:

w D
X

i
aiyixi (7.7)

ai C bi D1 / ,̀ 0 D
X

i
aiyi,

X

i
ai ¡d Dº. (7.8)

In the SV expansion (see equation 7.7), only those ai can be nonzero that
correspond to a constraint (see 7.4) that is precisely met (KKT conditions;
cf. Vapnik, 1995).

Substituting equations 7.7 and 7.8 into L, using ai, bi,d ¸ 0, and incor-
porating kernels for dot products leaves us with the following quadratic
optimization problem: maximize

W(®) D¡1
2

X

ij

aiajyiyjk(xi, xj) (7.9)
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subject to

0 · ai · 1 /` (7.10)

0 D
X

i
aiyi (7.11)

X

i
ai ¸ º. (7.12)

The resulting decision function can be shown to take the form

f ¤(x) Dsgn(X

i
aiyik(x, xi) C b

!
. (7.13)

Compared to the original dual (Boser et al., 1992; Vapnik, 1995), there are
two differences. First, there is an additional constraint, 7.12, similar to the
regression case, 2.14. Second, the linear term

P
i ai of Boser et al. (1992) no

longer appears in the objective function 7.9. This has an interesting conse-
quence: 7.9 is now quadratically homogeneous in ®. It is straightforward
to verify that one obtains exactly the same objective function if one starts
with the primal function t (w, », r ) Dkwk2 /2 C C ¢ (¡ºr C (1 / )̀

P
i ji) (i.e.,

if one does use C), the only difference being that the constraints, 7.10 and
7.12 would have an extra factor C on the right-hand side. In that case, due to
the homogeneity, the solution of the dual would be scaled by C; however, it
is straightforward to see that the corresponding decision function will not
change. Hence we may set C D1.

To compute b and r , we consider two sets S§ , of identical size s > 0,
containing SVs xi with 0 < ai < 1 and yi D § 1, respectively. Then, due to
the KKT conditions, 7.4 becomes an equality with ji D0. Hence, in terms of
kernels,

b D¡ 1
2s

X

x2SC [S¡

X

j

ajyjk(x, xj), (7.14)

r D 1
2s

0

@
X

x2SC

X

j

ajyjk(x, xj) ¡
X

x2S¡

X

j

ajyjk(x, xj)

1

A . (7.15)

As in the regression case, the º parameter has a more natural interpreta-
tion than the one we removed, C. To formulate it, let us �rst de�ne the term
margin error. By this, we denote points with ji > 0—that is, that are either
errors or lie within the margin. Formally, the fraction of margin errors is

Rr
emp[ f ] :D

1
`

|fi: yi ¢ f (xi) < r g| . (7.16)
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Here, f is used to denote the argument of the sgn in the decision function,
equation 7.13, that is, f ¤ Dsgn ± f .

We are now in a position to modify proposition 1 for the case of pattern
recognition:

Proposition 5. Suppose k is a real analytic kernel function, and we run º-SVC
with k on some data with the result that r > 0. Then

i. º is an upper bound on the fraction of margin errors.

ii. º is a lower bound on the fraction of SVs.

iii. Suppose the data (see equation 6.6) were generated i.i.d. from a distribution
P(x, y) D P(x)P(y|x) such that neither P(x, y D 1) nor P(x, y D ¡1)
contains any discrete component. Suppose, moreover, that the kernel is an-
alytic and non-constant. With probability 1, asymptotically, º equals both
the fraction of SVs and the fraction of errors.

Proof. Ad (i). By the KKT conditions,r > 0 impliesd D0. Hence, inequal-
ity 7.12 becomes an equality (cf. equations 7.8). Thus, at most a fraction º of
all examples can have ai D1/ .̀ All examples with ji > 0 do satisfy ai D1 /`
(if not, ai could grow further to reduce ji).

Ad (ii). SVs can contribute at most 1 /`to the left-hand side of 7.12; hence
there must be at least º`of them.

Ad (iii). It follows from the condition on P(x, y) that apart from some
set of measure zero (arising from possible singular components), the two
class distributions are absolutely continuous and can be written as inte-
grals over distribution functions. Because the kernel is analytic and non-
constant, it cannot be constant in any open set; otherwise it would be con-
stant everywhere. Therefore, functions f constituting the argument of the
sgn in the SV decision function (see equation 7.13) essentially functions
in the class of SV regression functions) transform the distribution over
x into distributions such that for all f , and all t 2 R, limc !0 P(| f (x) C
t| < c ) D 0. At the same time, we know that the class of these func-
tions has well-behaved covering numbers; hence we get uniform conver-
gence: for all c > 0, sup f |P(| f (x) C t| < c ) ¡ OP`(| f (x) C t| < c )| con-

verges to zero in probability, where OP` is the sample-based estimate of P
(that is, the proportion of points that satisfy | f (x) C t| < c ). But then for
all a > 0, limc !0 lim`!1 P(sup f

OP (̀| f (x) C t| < c ) > a) D 0. Hence,

sup f
OP`(| f (x) C t| D 0) converges to zero in probability. Using t D §r

thus shows that almost surely the fraction of points exactly on the mar-
gin tends to zero; hence the fraction of SVs equals that of margin errors.
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Combining (i) and (ii) shows that both fractions converge almost surely
to º.

Moreover, since equation 7.11 means that the sums over the coef�cients of
positive and negative SVs respectively are equal, we conclude that proposi-
tion 5 actually holds for both classes separately, with º/2. (Note that by the
same argument, the number of SVs at the two sides of the margin asymp-
totically agree.)

A connection to standard SV classi�cation, and a somewhat surprising
interpretation of the regularization parameter C, is described by the follow-
ing result:

Proposition 6. If º-SV classi�cation leads to r > 0, then C-SV classi�cation,
with C set a priori to 1/r , leads to the same decision function.

Proof. If one minimizes the function 7.3 and then �xes r to minimize
only over the remaining variables, nothing will change. Hence the obtained
solution w0, b0, »0 minimizes the function 7.1 for C D 1, subject to the con-
straint 7.4. To recover the constraint 7.2, we rescale to the set of variables
w 0 Dw /r , b0 Db /r , »0 D» /r . This leaves us, up to a constant scaling factor
r 2, with the objective function 7.1 using C D1 /r .

As in the case of regression estimation (see proposition 3), linearity of the
target function in the slack variables »

(¤) leads to “outlier ” resistance of the
estimator in pattern recognition. The exact statement, however, differs from
the one in regression in two respects. First, the perturbation of the point is
carried out in feature space. What it precisely corresponds to in input space
therefore depends on the speci�c kernel chosen. Second, instead of referring
to points outside the e-tube, it refers to margin error points—points that are
misclassi�ed or fall into the margin. Below, we use the shorthand zi for
W(xi).

Proposition 7 (resistance of SV classi�cation). Suppose w can be expressed
in terms of the SVs that are not at bound, that is,

w D
X

i
c izi, (7.17)

with c i 6D 0 only if ai 2 (0, 1/ )̀ (where the ai are the coef�cients of the dual
solution). Then local movements of any margin error zm parallel to w do not
change the hyperplane.

Proof. Since the slack variable of zm satis�es jm > 0, the KKT conditions
(e.g., Bertsekas, 1995) imply am D 1 / .̀ If d is suf�ciently small, then trans-
forming the point into z0

m :Dzm Cd ¢ w results in a slack that is still nonzero,
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that is,j 0
m > 0; hence we have a0

m D1/` Dam. Updating thejm and keeping
all other primal variables unchanged, we obtain a modi�ed set of primal
variables that is still feasible.

We next show how to obtain a corresponding set of feasible dual vari-
ables. To keep w unchanged, we need to satisfy

X

i
aiyizi D

X

i6Dm
a0

iyizi C amymz0
m.

Substituting z0
m D zm C d ¢ w and equation 7.17, we note that a suf�cient

condition for this to hold is that for all i 6Dm,

a0
i Dai ¡dc iyiamym.

Since by assumption c i is nonzero only if ai 2 (0, 1 / )̀, a0
i will be in (0, 1 / )̀ if

ai is, providedd is suf�ciently small, and it will equal 1 /` if ai does. In both
cases, we end up with a feasible solution ®0 , and the KKT conditions are still
satis�ed. Thus (Bertsekas, 1995), (w, b) are still the hyperplane parameters
of the solution.

Note that the assumption (7.17) is not as restrictive as it may seem. Although
the SV expansion of the solution, w D

P
i aiyizi, often contains many mul-

tipliers ai that are at bound, it is nevertheless conceivable that, especially
when discarding the requirement that the coef�cients be bounded, we can
obtain an expansion (see equation 7.17) in terms of a subset of the original
vectors. For instance, if we have a 2D problem that we solve directly in in-
put space, with k(x, y) D (x ¢ y), then it already suf�ces to have two linearly
independent SVs that are not at bound in order to express w. This holds
for any overlap of the two classes—even if there are many SVs at the upper
bound.

For the selection of C, several methods have been proposed that could
probably be adapted for º (Schölkopf, 1997; Shawe-Taylor & Cristianini,
1999). In practice, most researchers have so far used cross validation. Clearly,
this could be done also forº-SVC. Nevertheless, we shall propose a method
that takes into account speci�c properties of º-SVC.

The parameter º lets us control the number of margin errors, the crucial
quantity in a class of bounds on the generalization error of classi�ers using
covering numbers to measure the classi�er capacity. We can use this con-
nection to give a generalization error bound for º-SVC in terms of º. There
are a number of complications in doing this the best possible way, and so
here we will indicate the simplest one. It is based on the following result:

Proposition 8 (Bartlett, 1998). Suppose r > 0, 0 < d < 1
2 , P is a probability

distribution on X £ f¡1, 1g from which the training set, equation 6.6, is drawn.
Then with probability at least 1 ¡ d for every f in some function class F , the
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probability of error of the classi�cation function f ¤ D sgn ± f on an independent
test set is bounded according to

R[ f ¤] · Rr
emp[ f ] C

q
2
`

¡
ln N (F , l2`

1, r /2) C ln(2 /d )
¢

, (7.18)

where N (F , l`1, r ) D supXDx1 ,...,x`
N (F |X , l1,r ), F |X D f( f (x1), . . . , f (x`)):

f 2 F g, N (FX , l1,r ) is the r -covering number of FX with respect to l1, the
usual l1 metric on a set of vectors.

To obtain the generalization bound for º-SVC, we simply substitute the
bound Rr

emp[ f ] · º (proposition 5, i) and some estimate of the covering
numbers in terms of the margin. The best available bounds are stated in
terms of the functional inverse of N , hence the slightly complicated expres-
sions in the following.

Proposition 9 (Williamson et al., 1998). Denote BR the ball of radius R around
the origin in some Hilbert space F. Then the covering number N of the class of
functions

F Dfx 7! (w ¢ x): kwk · 1, x 2 BRg (7.19)

at scale r satis�es

log2 N (F , l`1, r ) · inf
n
n

c2R2

r 2
1
n log2

¡
1 C `

n

¢
¸ 1

o
¡ 1, (7.20)

where c < 103 is a constant.

This is a consequence of a fundamental theorem due to Maurey. For ` ¸ 2
one thus obtains

log2 N (F , l`1,r ) ·
c2R2

r 2 log2 `¡ 1. (7.21)

To apply these results to º-SVC, we rescale w to length 1, thus obtaining
a margin r /kwk (cf. equation 7.4). Moreover, we have to combine propo-
sitions 8 and 9. Using r /2 instead of r in the latter yields the following
result.

Proposition 10. Suppose º-SVC is used with a kernel of the form k(x, y) D
k(kx ¡ yk) with k(0) D1. Then all the data points W(xi) in feature space live in a
ball of radius 1 centered at the origin. Consequently with probability at least 1 ¡d
over the training set (see equation 6.6), the º-SVC decision function f ¤ D sgn ± f ,
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with f (x) D
P

i aiyik(x, xi) (cf. equation 7.13), has a probability of test error
bounded according to

R[ f ¤] · Rr
emp[ f ] C

s
2
`

¡
4c2kwk2

r 2 log2(2 )̀ ¡ 1 C ln(2 /d )
¢

· º C

s
2
`

¡
4c2kwk2

r 2 log2(2 )̀ ¡ 1 C ln(2/d)
¢

.

Notice that in general, kwk is a vector in feature space.
Note that the set of functions in the proposition differs from support

vector decision functions (see equation 7.13) in that it comes without the Cb
term. This leads to a minor modi�cation (for details, see Williamson et al.,
1998).

Better bounds can be obtained by estimating the radius or even opti-
mizing the choice of the center of the ball (cf. the procedure described by
Schölkopf et al. 1995; Burges, 1998). However, in order to get a theorem of
the above form in that case, a more complex argument is necessary (see
Shawe-Taylor, Bartlet, Williamson, & Anthony, 1998, sec. VI for an indica-
tion).

We conclude this section by noting that a straightforward extension of the
º-SVC algorithm is to include parametric models fk(x) for the margin, and
thus to use

P
qrqfq(xi) instead of r in the constraint (see equation 7.4)—in

complete analogy to the regression case discussed in section 5.

8 Experiments

8.1 Regression Estimation. In the experiments, we used the optimizer
LOQO.7 This has the serendipitous advantage that the primal variables b
and e can be recovered as the dual variables of the Wolfe dual (see equa-
tion 2.11) (i.e., the double dual variables) fed into the optimizer.

8.1.1 Toy Examples. The �rst task was to estimate a noisy sinc function,
given ` examples (xi, yi), with xi drawn uniformly from [¡3, 3], and yi D
sin(p xi) /(p xi) C ui, where the ui were drawn from a gaussian with zero
mean and variance s2. Unless stated otherwise, we used the radial basis
function (RBF) kernel k(x, x0) D exp(¡|x ¡ x0 |2), ` D 50, C D 100, º D 0.2,
and s D0.2. Whenever standard deviation error bars are given, the results
were obtained from 100 trials. Finally, the risk (or test error) of a regression
estimate f was computed with respect to the sinc function without noise,
as 1

6

R 3
¡3 | f (x) ¡ sin(p x) /(p x)| dx. Results are given in Table 2 and Figures 3

through 9.

7 Available online at http://www.princeton.edu/»rvdb/.

http://www.princeton.edu/%7Ervdb/
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Figure 3: º-SV regression with º D0.2 (top) and º D0.8 (bottom). The larger º
allows more points to lie outside the tube (see section 2). The algorithm auto-
matically adjusts e to 0.22 (top) and 0.04 (bottom). Shown are the sinc function
(dotted), the regression f , and the tube f § e.
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Figure 4: º-SV regression on data with noise s D 0 (top) and s D 1; (bottom).
In both cases, º D 0.2. The tube width automatically adjusts to the noise (top:
e D0; bottom: e D1.19).
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Figure 5: e-SV regression (Vapnik, 1995) on data with noise s D 0 (top) and
s D 1 (bottom). In both cases, e D 0.2. This choice, which has to be speci�ed
a priori, is ideal for neither case. In the upper �gure, the regression estimate is
biased; in the lower �gure, e does not match the external noise (Smola, Murata,
Schölkopf, & Müller, 1998).
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Figure 6: º-SVR for different values of the error constant º. Notice how e de-
creases when more errors are allowed (large º), and that over a large range of º,
the test error (risk) is insensitive toward changes in º.
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Figure 7: º-SVR for different values of the noise s. The tube radius e increases
linearly with s (largely due to the fact that both e and the j

(¤)
i enter the cost

function linearly). Due to the automatic adaptation of e, the number of SVs and
points outside the tube (errors) are, except for the noise-free case s D0, largely
independent of s.
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Figure 8: º-SVRfordifferent values of the constant C. (Top) e decreases when the
regularization is decreased (large C). Only very little, if any, over�tting occurs.
(Bottom) º upper bounds the fraction of errors, and lower bounds the fraction
of SVs (cf. proposition 1). The bound gets looser as C increases; this corresponds
to a smaller number of examples ` relative to C (cf. Table 2).
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Table 2: Asymptotic Behavior of the Fraction of Errors and SVs.

` 10 50 100 200 500 1000 1500 2000

e 0.27 0.22 0.23 0.25 0.26 0.26 0.26 0.26

Fraction of errors 0.00 0.10 0.14 0.18 0.19 0.20 0.20 0.20

Fraction of SVs 0.40 0.28 0.24 0.23 0.21 0.21 0.20 0.20

Notes: Thee found byº-SV regression is largely independentof the sample size .̀ The frac-
tion of SVs and the fraction of errors approachº D0.2 from above and below, respectively,
as the number of training examples ` increases (cf. proposition 1).

Figure 10 gives an illustration of how one can make use of parametric
insensitivity models as proposed in section 5. Using the proper model, the
estimate gets much better. In the parametric case, we used º D 0.1 and
f(x) Dsin2((2p /3)x), which, due to

R
f(x) dP(x) D1/2, corresponds to our

standard choice º D 0.2 in º-SVR (cf. proposition 4). Although this relies
on the assumption that the SVs are uniformly distributed, the experimental
�ndings are consistent with the asymptotics predicted theoretically: for ` D
200, we got 0.24 and 0.19 for the fraction of SVs and errors, respectively.

8.1.2 Boston Housing Benchmark. Empirical studies using e-SVR have
reported excellent performance on the widely used Boston housing regres-
sion benchmark set (Stitson et al., 1999). Due to proposition 2, the only
difference between º-SVR and standard e-SVR lies in the fact that different
parameters, e versusº, have to be speci�ed a priori. Accordingly, the goal of
the following experiment was not to show that º-SVR is better than e-SVR,
but that º is a useful parameter to select. Consequently, we are interested
only inº and e, and hence kept the remaining parameters �xed. We adjusted
C and the width 2s2 in k(x, y) D exp(¡kx ¡ yk2 /(2s2)) as in Schölkopf et
al. (1997). We used 2s2 D0.3 ¢ N, where N D13 is the input dimensionality,
and C /` D 10 ¢ 50 (i.e., the original value of 10 was corrected since in the
present case, the maximal y-value is 50 rather than 1). We performed 100
runs, where each time the overall set of 506 examples was randomly split
into a training set of ` D 481 examples and a test set of 25 examples (cf.
Stitson et al., 1999). Table 3 shows that over a wide range ofº (note that only
0 · º · 1 makes sense), we obtained performances that are close to the best
performances that can be achieved by selecting e a priori by looking at the
test set. Finally, although we did not use validation techniques to select the
optimal values for C and 2s2, the performances are state of the art (Stitson et
al., 1999, report an MSE of 7.6 for e-SVR using ANOVA kernels, and 11.7 for
Bagging regression trees). Table 3, moreover, shows that in this real-world
application, º can be used to control the fraction of SVs/errors.
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Table 3: Results for the Boston Housing Benchmark (top:º-SVR; bottom: e-SVR).

º 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

automatic e 2.6 1.7 1.2 0.8 0.6 0.3 0.0 0.0 0.0 0.0
MSE 9.4 8.7 9.3 9.5 10.0 10.6 11.3 11.3 11.3 11.3
STD 6.4 6.8 7.6 7.9 8.4 9.0 9.6 9.5 9.5 9.5
Errors 0.0 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5 0.5
SVs 0.3 0.4 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0

e 0 1 2 3 4 5 6 7 8 9 10

MSE 11.3 9.5 8.8 9.7 11.2 13.1 15.6 18.2 22.1 27.0 34.3
STD 9.5 7.7 6.8 6.2 6.3 6.0 6.1 6.2 6.6 7.3 8.4
Errors 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVs 1.0 0.6 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Note: MSE: Mean squared errors; STD: standard deviations thereof (100 trials); errors:
fraction of training points outside the tube; SVs: fraction of training points that are SVs.

8.2 Classi�cation. As in the regression case, the difference between C-
SVC and º-SVC lies in the fact that we have to select a different parameter
a priori. If we are able to do this well, we obtain identical performances.
In other words, º-SVC could be used to reproduce the excellent results ob-
tained on various data sets using C-SVC (for an overview; see Schölkopf,
Burges, & Smola, 1999). This would certainly be a worthwhile project; how-
ever,we restrict ourselves here to showing some toy examples illustrating
the in�uence of º (see Figure 11). The corresponding fractions of SVs and
margin errors are listed in Table 4.

9 Discussion

We have presented a new class of SV algorithms, which are parameterized
by a quantity º that lets one control the number of SVs and errors. We de-
scribedº-SVR, a new regression algorithm that has been shown to be rather

Figure 9: Facing page.º-SVR for different values of the gaussian kernel width 2s2 ,
using k(x, x0) D exp(¡|x ¡ x0 |2 /(2s2)). Using a kernel that is too wide results in
under�tting; moreover, since the tube becomes too rigid as 2s2 gets larger than
1, the e needed to accomodate a fraction (1 ¡ º) of the points, increases signif-
icantly. In the bottom �gure, it can again be seen that the speed of the uniform
convergence responsible for the asymptotic statement given in proposition 1
depends on the capacity of the underlying model. Increasing the kernel width
leads to smaller covering numbers (Williamson et al., 1998) and therefore faster
convergence.
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useful in practice. We gave theoretical results concerning the meaning and
the choice of the parameter º. Moreover, we have applied the idea under-
lying º-SV regression to develop a º-SV classi�cation algorithm. Just like
its regression counterpart, the algorithm is interesting from both a prac-
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Figure 10: Toy example, using prior knowledge about an x-dependence of the
noise. Additive noise (s D 1) was multiplied by the function sin2((2p /3)x).
(Top) The same function was used as f as a parametric insensitivity tube (sec-
tion 5). (Bottom) º-SVR with standard tube.



New Support Vector Algorithms 1241

Table4: Fractions of Errors andSVs,Along with the Margins of ClassSeparation,
for the Toy Example Depicted in Figure 11.

º 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of errors 0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71
Fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86
Margin 2r /kwk 0.009 0.035 0.229 0.312 0.727 0.837 0.922 1.092

Note: º upper bounds the fraction of errors and lower bounds the fraction of SVs, and
that increasing º, i.e. allowing more errors, increases the margin.

tical and a theoretical point of view. Controlling the number of SVs has
consequences for (1) run-time complexity, since the evaluation time of the
estimated function scales linearly with the number of SVs (Burges, 1998);
(2) training time, e.g., when using a chunking algorithm (Vapnik, 1979)
whose complexity increases with the number of SVs; (3) possible data com-
pression applications—º characterizes the compression ratio: it suf�ces to
train the algorithm only on the SVs, leading to the same solution (Schölkopf
et al., 1995); and (4) generalization error bounds: the algorithm directly op-
timizes a quantity using which one can give generalization bounds. These,
in turn, could be used to perform structural risk minimization overº. More-
over, asymptotically,º directly controls the number of support vectors, and
the latter can be used to give a leave-one-out generalization bound (Vapnik,
1995).

Figure 11: Toy problem (task: separate circles from disks) solved using º-SV
classi�cation, using parameter values ranging from º D 0.1 (top left) to º D
0.8 (bottom right). The larger we select º, the more points are allowed to lie
inside the margin (depicted by dotted lines). As a kernel, we used the gaussian
k(x, y) Dexp(¡kx ¡ yk2).
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In both the regression and the pattern recognition case, the introduction
of º has enabled us to dispose of another parameter. In the regression case,
this was the accuracy parameter e; in pattern recognition, it was the reg-
ularization constant C. Whether we could have as well abolished C in the
regression case is an open problem.

Note that the algorithms are not fundamentally different from previous
SV algorithms; in fact, we showed that for certain parameter settings, the
results coincide. Nevertheless, we believe there are practical applications
where it is more convenient to specify a fraction of points that is allowed to
become errors, rather than quantities that are either hard to adjust a priori
(such as the accuracy e) or do not have an intuitive interpretation (such
as C). On the other hand, desirable properties of previous SV algorithms,
including the formulation as a de�nite quadratic program, and the sparse
SV representation of the solution, are retained. We are optimistic that in
many applications, the new algorithms will prove to be quite robust. Among
these should be the reduced set algorithm of Osuna and Girosi (1999), which
approximates the SV pattern recognition decision surface by e-SVR. Here,
º-SVR should give a direct handle on the desired speed-up.

Future work includes the experimental test of the asymptotic predictions
of section 4 and an experimental evaluation of º-SV classi�cation on real-
world problems. Moreover, the formulation of ef�cient chunking algorithms
for the º-SV case should be studied (cf. Platt, 1999). Finally, the additional
freedom to use parametric error models has not been exploited yet. We
expect that this new capability of the algorithms could be very useful in
situations where the noise is heteroscedastic, such as in many problems of
�nancial data analysis, and general time-series analysis applications (Müller
et al., 1999; Mattera & Haykin, 1999). If a priori knowledge about the noise
is available, it can be incorporated into an error model f ; if not, we can try to
estimate the model directly from the data, for example, by using a variance
estimator (e.g., Seifert, Gasser, & Wolf, 1993) or quantile estimator (section 3).
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