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Analysis of Variance Models

1 Non-Full-Rank Models

y = Xβ + ϵ,

where E(ϵ) = 0 and var(ϵ) = σ2I , but X does not have a full

column rank, i.e., rank(X) = k < p ≤ n and X ′X is singular.

In this model, the p parameters in β are not unique.

Example 1.1 One-way Model:

y11

y12

y13

y21

y22

y23


=



1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1




µ

τ1

τ2

 +



ϵ11

ϵ12

ϵ13

ϵ21

ϵ22

ϵ23


.

2 Estimation

2.1 Estimability of β

The least squares approach lead to solving the normal equations

X ′Xβ̂ = X ′y.
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Theorem 2.1 If X is n× p of rank k < p ≤ n, the system of

equations X ′Xβ̂ = X ′y is consistent.

Proof: The system is consistent if and only if (AA−c = c)

X ′X(X ′X)−X ′y = X ′y.

Since X ′X(X ′X)−X ′ = X ′, the system is consistent. □

Since the normal equations are consistent, one solution is β̂ =

(X ′X)−X ′y. Some general results are given below.

(1) β̂ is a linear function of y.

(2) E(β̂) = (X ′X)−X ′E(y) = (X ′X)−X ′Xβ, which depends

on (X ′X)− and it is biased.

3. β is not estimable. Suppose a linear function Ay estimates β,

β = E(Ay) = E(AXβ +Aϵ) = AXβ.

Since this must hold for all β, we must have AX = Ip. But

rank(AX) ≤ rank(X) < p. Hence, AX ̸= Ip, and no such

an A exists.

2.2 Estimable function of β

Definition 2.1 A linear function of parameters λ′β is said to

be estimable if there exists a linear combination of the observa-

tions with an expected value equal to λ′β, i.e., λ′β is estimable

if there exists a vector a such that E(a′y) = λ′β.
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Theorem 2.2 In the model y = Xβ + ϵ, where E(y) = Xβ

and X is n × p of rank k < p ≤ n, the linear function λ′β

is estimable if and only if any one of the following conditions

holds:

(i) λ′ is a linear combination of the row of X, i.e., there exists

a vector a such that

a′X = λ′.

(ii) λ′ is a linear combination of the rows of X ′X or λ is

a linear combination of the columns of X ′X, i.e., there

exists a vector r such that

r′X ′X = λ′ or X ′Xr = λ.

(iii) λ or λ′ is such that

X ′X(X ′X)−λ = λ or λ′(X ′X)−X ′X = λ′,

where (X ′X)− is any (symmetric) generalized inverse of

X ′X.

Proof: We only prove the “if” part. (i) If there exists a vector a

such that λ′ = a′X , then

E(a′y) = a′E(y) = a′Xβ = λ′β.

(ii) If there exists a solution to X ′Xr = λ, then by defining

a = Xr, we have

E(a′y) = E(r′X ′y) = r′X ′E(y) = r′X ′Xβ = λ′β.
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(iii) If X ′X(X ′X)−λ = λ, then (X ′X)λ is a solution to

X ′Xr = λ in part (ii).

Conversely, if λ′β is estimable, then X ′Xr = λ has a solution

vector, which can be found as r = (X ′X)−λ. Substitution into

X ′Xr = λ gives that X ′X(X ′X)−λ = λ. □

Thus we can examine linear combinations of the rows of X or

of X ′X to see what functions of the parameters are estimable.

Example 2.1 Consider

X =


1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

 , β =



µ

α1

α2

β1

β2


.

For example, row(3)-row(1), we have λ′ = (0,−1, 1, 0, 0),

thus λ′β = −α1 + α2 is estimable.

We take linear combinations a′X of the rows of X to obtain

three linearly independent rows. Subtracting the first rows from

each succeeding rows in X, then subtracting the second and

third rows from the fourth row of the matrix yields
1 1 0 1 0

0 0 0 −1 1

0 −1 1 0 0

0 0 0 0 0

 .
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Thus we have three linearly independent estimable functions

λ′
1β = µ + α1 + β1, λ′

2β = β2 − β1, λ′
3β = α2 − α1.

3 Estimators

3.1 Estimators of λ′β

From theorem 2.2 (i) and (ii) we have the estimators a′y and

r′X ′y for λ′β, where a′ and r′ satisfy λ′ = a′X and λ′ =

r′X ′X , respectively. A third estimator of λ′β is λ′β̂, where β̂ is

a solution of X ′Xβ̂ = X ′y.

Theorem 3.1 Let λ′β be an estimable function of β in the

model y = Xβ + ϵ, where E(y) = Xβ and X is n × p of

rank k < p ≤ n. Let β̂ be any solution to the normal equa-

tions X ′Xβ̂ = X ′y, and let r be any solution to X ′Xr = λ.

Then the two estimators λ′β̂ and r′X ′y have the following

properties:

(i) E(λ′β̂) = E(r′X ′y) = λ′β.

(ii) λ′β̂ is equal to r′X ′y for any β̂ or any r.

(iii) λ′β̂ and r′X ′y are invariant to the choice of β̂ and r.

Proof: (i) Since

E(λ′β̂) = λ′E(β̂) = λ′(X ′X)−X ′Xβ.
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By theorem 2.2 (iii), λ′(X ′X)−X ′X = λ′, therefore E(λ′β̂)

becomes

E(λ′β̂) = λ′β.

By theorem 2.2 (ii),

E(r′X ′y) = r′X ′E(y) = r′X ′Xβ = λ′β.

(ii) By theorem 2.2(ii), if λ′β is estimable, λ′ = r′X ′X for some

r. Multiplying the normal equations X ′Xβ̂ = X ′y by r′ gives

r′X ′Xβ̂ = r′X ′y.

Since r′X ′X = λ′, we have

λ′β̂ = r′X ′y.

(iii) To show that r′X ′y is invariant to the choice of r, let r1

and r2 be such that X ′Xr1 = X ′Xr2 = λ. Then

r′
1X

′Xβ̂ = r′
1X

′y and r′
2X

′Xβ̂ = r′
2X

′y.

Since r′
1X

′X = r′
2X

′X , we have r′
1X

′y = r′
2X

′y. It is clear

that each is equal to λ′β̂. □

Example 3.1 Example 11.3.1 (Rencher (2000), p.273-274).

Theorem 3.2 Let λ′β be an estimable function in the model

y = Xβ + ϵ, where X is n × p of rank k < p ≤ n and

cov(y) = σ2I. Let r be any solution to X ′Xr = λ and let β̂

be any solution to X ′Xβ̂ = X ′y. Then the variance of λ′β̂

or of r′X ′y has the following properties:
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(i) var(r′X ′y) = σ2r′X ′Xr = σ2r′λ.

(ii) var(λ′β̂) = σ2λ′(X ′X)−λ.

(iii) var(λ′β̂) is unique, that is, invariant to the choice of r or

of (X ′X)−.

Proof: (i)

var(r′X ′y) = r′X ′cov(y)Xy = σ2r′X ′Xr = σ2r′λ.

(ii)

var(λ′β̂) = λ′cov(β̂)λ = σ2λ′(X ′X)−X ′X(X ′X)−λ.

Since λ′(X ′X)−X ′X = λ′, therefore (ii) is proved.

(iii) Since

λ′(X ′X)−λ = r′(X ′X)(X ′X)−(X ′X)r = r′X ′Xr = r′λ,

it is only need to show that λ′(X ′X)−λ is invariant to the choice

of (X ′X)−. Let G1 and G2 be two generalized inverse of X ′X .

Then

XG1X
′ = XG2X

′.

Multiplying both sides by a such that a′X = λ′, we obtain

a′XG1X
′a = a′XG2X

′a

or

λ′
1G1λ2 = λ′

1G1λ2.

□
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Theorem 3.3 If λ′β is an estimable function in the model

y = Xβ + ϵ, where X is n × p of rank k < p ≤ n, then the

estimators λ′β̂ and r′X ′y are BLUE.

Proof: Let a linear estimator of λ′β be denoted by a′y, where

without loss of generality a′y = r′bX ′y + c′y, that is, a′ =

r′X ′+c′, where r′ is a solution to λ′ = r′X ′X . For unbiasedness

we must have

λ′β = E(a′y) = a′Xβ = r′X ′Xβ+c′Xβ = (r′X ′X+c′X)β.

Thus must hold for all β, and we therefore have

λ′ = r′X ′X + c′X.

Since λ′ = r′X ′X , it follows that c′X = 0′.

var(a′y) = a′cov(y)a = σ2a′a

= σ2(r′X ′ + c′)(rX + c)

= σ2(r′X ′Xr + r′X ′c + c′Xr + c′c)

= σ2(r′X ′Xr + c′c).

Therefore, to minimize var(a′y), we have c = 0 and that r′Xy

is BLUE. □

3.2 Estimator of σ2

An estimator of σ2 is

s2 =
SSE

n− k
, (1)
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where SSE = (y − Xβ̂)′(y − Xβ̂), β̂ is any solution to the

normal equation X ′Xβ̂ = X ′y, and k = rank(X).

Theorem 3.4 For s2 defined in equation (1) for the non-full-

rank model y = Xβ + ϵ with E(y) = Xβ and cov(y) = σ2I,

we have the following properties:

(i) E(s2) = σ2.

(ii) s2 is invariant to the choice of β̂ or to the choice of gen-

eralized inverse (X ′X)−.

Proof: (i) Since SSE = y′(I −X(X ′X)−X ′)y, we have

E(SSE) = tr{[I −X(X ′X)−X ′](σ2I)} + β′X ′[I −X(X ′X)−X ′]Xβ

= tr{[I −X(X ′X)−X ′](σ2I)}

= σ2{tr(I)− tr[I −X(X ′X)−X ′]}

= (n− k)σ2,

where k = rank(X ′X) = rank(X).

(ii)Since X(X ′X)−X ′ is invariant to the choice of (X ′X)−. □

3.3 Normal Model

For the non-full-rank model y = Xβ + ϵ, we now assume that

y ∼ Nn(Xβ, σ2I) or ϵ ∼ Nn(0, σ
2I).

With the normality assumption we can obtain maximum likelihood

estimators.
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Theorem 3.5 If y is Nn(Xβ, σ2I), where X is n× p of rank

k < p ≤ n, then the maximum likelihood estimators for β and

σ2 are

β̂ = (X ′X)−X ′y,

σ̂2 =
1

n
(y −Xβ̂)′(y −Xβ̂).

Proof: Exercise. □

Theorem 3.6 If y is Nn(Xβ, σ2I), where X is n× p of rank

k < p ≤ n, then the maximum likelihood estimators β̂ and s2

(corrected for bias) have the following properties:

(i) β̂ is Np((X
′X)−X ′Xβ, σ2(X ′X)−X ′X(X ′X)−).

(ii) (n− k)s2/σ2 is χ2(n− k).

(iii) β̂ and s2 are independent.

Proof: Exercise (the proof is the same with the full-rank case).□

4 Testing Hypothesis

It can be shown that unless a hypothesis can be expressed in terms

of estimable functions, it cannot be tested (see Searle 1971, pp.193-

196). This leads to the following definition:

Definition 4.1 A hypothesis is said to be testable if it can

be expressed in terms of estimable functions.
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Typically, a testable hypothesis can be written as

H0 : Cβ = t,

where C = (c′(1), c
′
(2), · · · , c′(m))

′, c(i)β = ti, i = 1, 2, · · · ,m. We

assume that

(1) C has a full row rank, tank(C) = m.

(2) c′(i)β are estimable for all i.

Theorem 4.1 If y is Nn(Xβ, σ2I), where X is n× p of rank

k < p ≤ n, if C is m × p of rank m ≤ k such that Cβ

is a set of m linearly independent estimable functions, and if

β̂ = (X ′X)−X ′y, then

(i) C(X ′X)−C ′ is nonsingular and invariant to (X ′X)−.

(ii) Cβ̂ is Nm(Cβ, σ2C(X ′X)−C ′).

(iii) SSH/σ2 = (Cβ̂)′[C(X ′X)−C ′]−1(Cβ̂)/σ2 is χ2(m,λ),

where λ = (Cβ)′[C(X ′X)−C ′]−1(Cβ)/2σ2.

(iv) SSE/σ2 = y′[I −X(X ′X)−X ′]y/σ2 is χ2(n− k).

(v) SSH and SSE are independent.

Proof: Since

Cβ =


c(1)β
...

c(m)β


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is a set ofm linearly independent estimable functions, then by the-

orem 2.2 (iii) we have c(i)(X
′X)−X ′X = c(i) for i = 1, 2, · · · ,m.

Hence,

C(X ′X)−X ′X = C. (2)

Since rank(AB) ≤ rank(A), we have

rank(C) ≤ rank(C(X ′X)−X ′) ≤ rank(C).

That is, rank(C(X ′X)−X ′) = m. Since rank(A) = rank(AA′),

we have

rank(C) = rank(C(X ′X)−X ′)

= rank(C(X ′X)−X ′X(X ′X)−C ′]

= rank(C(X ′X)−C ′)

(3)

In the last equality, we use the equality C(X ′X)−X ′X = C.

Thus,C(X ′X)−C ′ is nonsingular. The invariance ofC(X ′X)−C ′

follows from the invariance of X(X ′X)−X ′.

(ii)

E(Cβ̂) = CE(β̂) = C(X ′X)−X ′Xβ.

By (2), we have E(Cβ̂) = Cβ.

cov(Cβ̂) = Ccov(β̂C ′ = σ2C(X ′X)−X ′X(X ′X)−C ′.

By (3), we have cov(Cβ̂) = σ2C(X ′X)−C ′.

Due to that Cβ̂ is a linear function of y, (ii) is proved.

(iii) By part (ii), cov(Cβ̂) = σ2C(X ′X)−C ′. Since

σ2[C(X ′X)−C ′]−1C(X ′X)−C ′/σ2 = I,
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the result is followed.

(iv) Exercise. (v) Exercise. □

Theorem 4.2 Let y be Nn(Xβ, σ2I), where X is n×p of rank

k < p ≤ n, and let C, Cβ, and β̂ be defined as in theorem

4.1. Then if H0 : Cβ = 0 is true, the statistic

F =
SSH/m

SSE/(n− k)

=
(Cβ̂)′[C(X ′X)−C ′]−1(Cβ̂)/m

SSE/(n− k)

is distributed as F (m,n− k).

Proof: Exercise. □

5 Reparameterization

In reparameterization, we transform the non-full-rank model y =

Xβ + ϵ, where X is n × p of rank k < p ≤ n, to the full-rank-

model y = Zγ+ϵ, where Z is n×n×k of rank k and γ = Uβ is

a set of k independent estimable functions of β. Thus, Zγ = Xβ,

and we write

Zγ = ZUβ = Xβ,

where X = ZU . Since UU ′ is nonsingular (rank(UU ′) = k),

we have

ZUU ′ = XU ′,
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and

Z = XU ′(UU ′)−1.

Now Z is a full-column rank matrix (rank(Z) ≥ rank(X) = k),

and the results for the full-rank model can then be applied here.

Hence, we have (the least square estimators)

γ̂ = (Z ′Z)−1Z ′y,

s2 =
1

n− k
(y −Zγ̂)′(y −Zγ̂) =

SSE

n− k
.

Since Zγ = Xβ,

Zγ̂ = Xβ̂,

and therefore

SSE = (y −Xβ̂)′(y −Xβ̂) = (y −Zγ̂)′(y −Zγ̂).

Also, for any estimable function λ′β, we have

λ′β = a′Xβ = a′Zγ,

hence,

λ̂′β̂ = a′Zγ̂.

i.e., the estimator of λ′β is invariant to the reparameterization.

Example 5.1 We illustrate the reparameterization technique

for the model yij = µ + τi + ϵij, i = 1, 2, j = 1, 2. In matrix
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form, the model is

y = Xβ + ϵ =


1 1 0

1 1 0

1 0 1

1 0 1



µ

τ1

τ2

 +


ϵ11

ϵ12

ϵ21

ϵ22

 .

Since X has rank 2, there exist two linearly independent es-

timable functions. We can choose these in many ways, one of

which is µ + τ1 and µ + tau2. Thus

γ =

(
γ1

γ2

)
=

(
µ + τ1

µ + τ2

)
=

(
1 1 0

1 0 1

)
µ

τ1

τ2

 = Uβ.

U =


1 0

1 0

0 1

0 1

 .

It is easy to verify that Zγ = Xβ and ZU = X.

6 Side Conditions

The technique of imposing side conditions provides (linear) con-

straints on a non-full-rank model such that the parameters unique

and individually estimable. Another use for side conditions is to

impose constraints on the estimates so as to simplify the normal
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equations. Note that the side conditions must be nonestimable

functions of β.

The matrix X is n × p of rank k < p. Hence the deficiency

in the rank of X is p − k. In order for all the parameters to be

unique, we must define side conditions that make up this deficiency

in rank. Accordingly, we define side conditions Tβ = 0
¯
, where T

is a (p − k) × p matrix of rank p − k such that Tβ is a set of

nonestimable functions.

Theorem 6.1 If y = Xβ + ϵ, where X is n × p of rank

k < p ≤ n, and if T is a (p − k) × p matrix of rank p − k

such that Tβ is a set of nonestimable functions, then there

us a unique vector β̂ that satisfies both X ′Xβ̂ = X ′y and

T β̂ = 0
¯
.

Proof: Combine the two equations, we have(
y

0
¯

)
=

(
X

T

)
β +

(
ϵ

0
¯

)
.

Thus,

(
X

T

)′(
X

T

)
is p× p of rank p (nonsingular), and we have

β̂ = [

(
X

T

)′(
X

T

)
]−1

(
X

T

)′(
y

b0

)
= (X ′X + T ′T )−1X ′y.

□
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Example 6.1 Consider the model yij = µ+τi+ϵij, i = 1, 2, j =

1, 2. It can be shown that the function τ1+ τ2 is not estimable.

The side condition τ1+τ2 = 0 can be expressed as (0, 1, 1)β = 0,

and X ′X + T ′T becomes

X ′X + T ′T =


4 2 2

2 2 0

2 0 2

 +


0

1

1

(0 1 1
)
=


4 2 2

2 3 1

2 1 3

 .

Then

(X ′X + T ′T )−1 =
1

4


2 −1 −1

−1 2 0

−1 0 2

 .

With X ′y = (y.., y1., y2.), we obtain

β̂ = (X ′X + T ′T )−1X ′y

=


ȳ..

ȳ1. − ȳ..

ȳ2. − ȳ..

 ,

since y1. + y2. = y.. and ȳi. = yi./2.

7 Full and Reduced Model Test

Suppose we are interested in testing H0 : β1 = · · · = βq in the

non-full-rank model y = Xβ + ϵ, where β is p × 1 and X is

n × p of rank k < p ≤ n. If H0 is testable, we can find a set of

linearly independent estimable functions λ′
1β, · · · ,λ′

tβ such that
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H0 is equivalent to

H0 : γ1 =


λ′
1β
...

λ′
tβ

 =


0
...

0

 .

It is also possible to find

γ2 =


λ′
t+1β
...

λ′
kβ


such that k functions λ′

1β, · · · ,λ′
kβ are linearly independent and

estimable, where k = rank(X). Let

γ =

(
γ1

γ2

)
.

We can now reparameterize from the non-full-rank model to the

full rank model

y = Zγ + ϵ = Z1γ1 +Z2γ2 + ϵ,

where Z = (Z1,Z2) is partitioned to conform with the number of

elements in γ1 and γ2.

Since y = Zγ+ϵ is a full-rank model, the hypothesisH0 : γ1 =

0
¯
can be tested as in the full-rank model. The test is outlined in

table 1. Note that the degrees of freedom, t, for SS(γ1|γ2) is

the number of linearly independent estimable functions required

to express H0.
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Table 1: ANOVA for testing H0 : γ1 = 0
¯
in reparameterized balanced models

Source of Variation d.f. Sum of Squares F -Statistic

Due to γ1 adjusted for γ2 t SS(γ1|γ2) = γ̂ ′Z ′y − γ̂ ′
2Z

′
2y

SS(γ1|γ2)/t
SSE/(n−k)

Error n− k SSE = y′y − γ̂ ′Z ′y

Total n− 1 SST = y′y − nȳ2

Table 2: ANOVA for testing H0 : γ1 = 0
¯
in reparameterized balanced models

Source of Variation d.f. Sum of Squares F -Statistic

Due to β1 adjusted for β2 t SS(β1|β2) = β̂
′
X ′y − β̂

′
2X

′
2y

SS(β1|β2)/t
SSE/(n−k)

Error n− k SSE = y′y − β̂
′
X ′y

Total n− 1 SST = y′y − nȳ2

Sine in the reparameterization model, we have Xβ̂ = Zγ̂, we

have

β̂
′
X ′y = γ̂ ′Z ′y,

where β̂ is any solution to the normal equation X ′Xβ̂ = X ′y.

Similarly, corresponding to y = Z2γ
∗
2 + ϵ∗, we have a reduced

model y = X2β
∗
2 + ϵ∗ obtained by setting β1 = · · · = βq. Then

β̂
∗′

2 X
′
2y = γ̂∗′

2 Z
′
2y.

The test can then be expressed as in Table 2, in which β̂
′
X ′y is

obtained from the full model y = Xβ+ϵ and β̂
′
2X

′
2y is obtained

from the model y = X2β2 + ϵ, which has been reduced by the

hypothesis H0 : β1 = · · · = βq.
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8 One Way analysis of Variance: Balanced Case

8.1 The one-way model

The one-way balanced model can be expressed as follows:

yij = µ + αi + ϵij, i = 1, 2, · · · , k, j = 1, 2, · · · , n. (4)

If α1, · · · , αk represent the effects of k treatments, each of which

is applied to n experimental units, then yij is the response of the

jth observation among the n units that receive the ith treatment.

The assumptions for the model are

(1) E(ϵij) = 0 for all i, j.

(2) var(ϵij) = σ2 for all i, j.

(3) cov(ϵij, ϵrs) = 0 for all (i, j) ̸= (r, s).

We sometimes have the distribution assumption that

(4) ϵij is distributed as N(0, σ2).

In this model, we often use µi to denote the mean for the ith

treatment, i.e., E(yij) = µi, using assumption (1), we have µi =

µ + αi. We can thus write the model in the form

yij = µi + ϵij, i = 1, 2, · · · , k, j = 1, 2, · · · , n.

In this form of the model, the hypothesis H0 : µ1 = µ2 = · · · = µk

is of interest.
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8.2 Estimation of parameters

Extending (4) to a general k and n, the one-way model can be

written in matrix form as
y1

y2

...

yk

 =


j j 0

¯
· · · 0

¯
j 0

¯
j · · · 0

¯... ... ... ...

j 0
¯

0
¯

· · · j





µ

α1

α2

...

αk


+


ϵ1

ϵ2
...

ϵk


or

y = Xβ + ϵ,

where j and 0
¯
are each of size n× 1, and yi and ϵi are defined as

yi =


yi1

yi2
...

yin

 , ϵi =


ϵi1

ϵi2
...

ϵin

 .

Thus, the normal equation X ′Xβ̂ = X ′y takes the form

kn n n · · · n

n n 0 · · · 0

n 0 n · · · 0
... ... ... ...

n 0 0 · · · n





µ̂

α̂1

α̂2

...

α̂k


=



y..

y1.

y2.
...

yk.


,

where y.. =
∑

ij yij and yi. =
∑

j yij.
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A generalized inverse of X ′X is given by

(X ′X)− =


0 0 · · · 0

0 1/n · · · 0
... ... ...

0 0 · · · 1/n

 . (5)

Then a solution to the normal equation is obtained as

β̂ = (X ′X)−X ′y =


0

ȳ1.
...

ȳk.

 . (6)

The estimators in (6) are different for different (X ′X)−, but they

give the same estimates of estimable functions, since λ′β̂ is invari-

ant to the choice of β̂.

Using β̂ in (6), we can express SSE in the following form:

SSE = y′(I −X(X ′X)−X ′)y

= y′y − β̂
′
X ′y

=

k∑
i=1

n∑
j=1

y2ij −
k∑

i=1

ȳi.yi.

=
∑
ij

y2ij −
∑
i

y2i.
n
.

Thus, s2 (E(s2) = σ2) is given by

s2 =
1

k(n− 1)
[
∑
ij

y2ij −
∑
i

y2i.
n
].
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8.3 Testing the hypothesis H0 : µ1 = µ2 = · · · = µk

Using the relationship µi = µ+αi, the hypothesis can be expressed

as H0 : α1 = α2 = · · · = αk, which is testable because it can be

written in terms of k− 1 linearly independent estimable contrasts,

for example, H0 : α1 − α2 = α1 − α3 = · · · = α1 − αk = 0.

For simplicity, we illustrate the testing procedure with k = 4.

In this case, β = (µ, α1, α2, α2, α4)
′ and the hypothesis is H0 :

α1 = α2 = α3 = α4. Using three linearly independent estimable

contrasts, the hypothesis can be written in the form

H0 :


α1 − α2

α1 − α3

α1 − α4

 =


0

0

0

 ,

which can be expressed as H0 : Cβ = 0
¯
, where

C =


0 1 −1 0 0

0 1 0 −1 0

0 1 0 0 −1

 . (7)

The matrix C in (7) is not unique, for example,

C2 =


0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1


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Using C in (7) and (X ′X)− in (5), we have

C(X ′X)−C ′ =
1

n


2 1 1

1 2 1

1 1 2

 . (8)

To find the inverse of (8), we write it in the form

C(X ′X)−C ′ =
1

n
{


1 0 0

0 1 0

0 0 1

 +


1 1 1

1 1 1

1 1 1

} =
1

n
(I3 + j3j

′
3).

By the formula:

(B + cc′)−1 = B−1 − B−1cc′B−1

1 + c′B−1c
,

we have

[C(X ′X)−C ′]−1 = n(I3 −
I−1
3 j3j

′
3I

−1
3

1 + j ′3I
−1
3 j3

) = n(I3 −
1

4
J3), (9)

where J3 is 3× 3.

In addition, we have

C(X ′X)−X ′ =
1

n


j ′n −j ′n 0

¯
′ 0

¯
′

j ′n 0
¯
′ −j ′n 0

¯
′

j ′n 0
¯
′ 0

¯
′ −j ′n

 =
1

n
A, (10)

where j ′n and 0
¯
′ are 1× n.
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Using (9) and (10), we have

SSH = (Cβ̂)′[C(X ′X)−C ′]−1Cβ̂

= y′X(X ′X)−C ′[C(X ′X)−C ′]−1C(X ′X)−X ′y

= y′[
1

n
A′n(I3 −

1

4
J3)

1

n
A]y

= y′[
1

n
A′A− 1

4n
A′J3A]y

= y′[
1

4n


3Jn −Jn −Jn −Jn

−Jn 3Jn −Jn −Jn

−Jn −Jn 3Jn −Jn

−Jn −Jn −Jn 3Jn

]y′

= y′[
1

4n
B]y

Note that

1

4n
B =

1

n


4Jn O O O

O 4Jn O O

O O 4Jn O

O O O 4Jn

− 1

4n


Jn Jn Jn Jn

Jn Jn Jn Jn

Jn Jn Jn Jn

Jn Jn Jn Jn

 .

Hence, we have

SSH =
1

n

4∑
i=1

y′
iJnyi −

1

4n
y′J4ny

=
1

n

4∑
i=1

y′
ijnj

′
nyi −

1

4n
y′j4nj

′
4ny

=
1

n

4∑
i=1

y2i. −
1

4n
y2...
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Table 3: Ascorbic Acid (mg/100g) for three packaging methods

A B C

14.29 20.06 20.04

19.10 20.64 26.23

19.09 18.00 22.74

16.25 19.56 24.04

15.09 19.47 23.37

16.61 19.07 25.02

19.63 18.38 23.27

Totals (yi.) 120.06 135.18 164.71

Means (ȳi.) 17.15 19.31 23.53

Example 8.1 (Ascorbic Acid) Three methods (A-C) of pack-

aging frozen foods were compared by Daniel (1974, p.196). The

response variable was ascorbic acid. The data are given in the

table 8.1.

To test the hypothesis H0 : µ1 = µ2 = µ3, we calculate

y2..
kn

=
419.952

(3)(7)
= 8398.0001

1

7

3∑
i=1

y2i. =
1

7
[120.062 + 135.182 + 164.712] = 8545.3457

3∑
i=1

7∑
j=1

y2ij = 8600.3127

The sums of squares for the treatments, error, and total are
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Table 4: Analysis of Variance for the Ascorbic Acid Data

Source d.f. Sum of Squares Mean Square F

Method 2 147.3456 73.6728 24.1256

Error 18 54.9670 3.9537

Total 20 202.312

then

SSH =
1

7

3∑
i=1

y2i. −
y2..
21

= 8545.3457− 8398.0001 = 147.3456,

SSE =
∑
ij

y2ij −
1

7

∑
i

y2i. = 8600.3127− 8545.3457 = 54.9670

SST =
∑
ij

y2ij −
y2..
21

= 8600.3127− 8398.0001 = 202.3126

These sums of squares can be used to obtain an F -test, as

shown in table 8.1. The p-value for F = 24.1256 is 8.07×10−6.

Thus, we reject H0 : µ1 = µ2 = µ3.

8.4 Hypothesis test for a contrast

In exercises, we have shown that for the one-way balanced model,

contrasts in α’s are estimable, that is
∑

i ciαi is estimable if and

only if
∑

i ci = 0. Since

k∑
i=1

ciµi =

k∑
i=1

ci(µ + αi) = µ
k∑

i=1

ci +
k∑

i=1

ciαi =

k∑
i=1

ciαi,

the contrast
∑

i ciαi is equivalent to
∑

i ciµi.
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A hypothesis of interest is

H0 :

k∑
i=1

ciαi = 0 or H0 :

k∑
i=1

ciµi = 0,

which represents a comparison of means if
∑

i ci = 0. For example,

H0 : 3µ1 − µ2 − µ3 − µ4 = 0

can be written as

H0 : µ1 =
1

3
(µ2 + µ3 + µ4),

which compares µ1 with the average of µ2, µ3 and µ4.

The hypothesis can be expressed as H0 : c′β = 0, where

c′ = (0, c1, · · · , ck) and β = (µ, α1, · · · , αk)
′. Assuming y is

Nkn(Xβ, σ2I), H0 can be tested using the following F statistic:

F =
(c′β̂)′[c′(X ′X)−c]−1c′β̂

SSE/k(n− 1)

=
(c′β̂)2

s2c′(X ′X)−c

=
(
∑k

i=1 ciȳi.)
2

s2
∑k

i=1 c
2
i/n

,

where s2 = SSE/k(n − 1) and (X ′X)− and β̂ are given by (5)

and (6).

9 Two-Way Analysis of Variance: Balanced Case

Suppose we have the additive (no-interaction) model

yij = µ + αi + βj + ϵij, i = 1, · · · , a, j = 1, · · · , b
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This model is two-factor design with balanced data. Factor A (for

α) has a levels. Factor B (for β) has b levels. Only one observation

yij in each (i, j) cell.

In matrix form, the model can be written as

y = Xβ + ϵ,

where y = (y11, · · · , y1b, y21, · · · , y2b, · · · , ya1, · · · , yab)′,
β = (µ, α1, · · · , αa, β1, · · · , βb),
ϵ = (ϵ11, · · · , ϵ1b, ϵ21, · · · , ϵ2b, · · · , ϵa1, · · · , ϵab), and

X =



µ α1 α2 · · · αa β1 β2 · · · βb

1 1 0 · · · 0 1 0 · · · 0

1 1 0 · · · 0 0 1 · · · 0
... ... ... ... ... ... ...

1 1 0 · · · 0 0 0 · · · 1

1 0 1 · · · 0 1 0 · · · 0

1 0 1 · · · 0 0 1 · · · 0
... ... ... ... ... ... ...

1 0 1 · · · 0 0 0 · · · 1
... ... ... ... ... ... ...

1 0 0 · · · 1 1 0 · · · 0

1 0 0 · · · 1 0 1 · · · 0
... ... ... ... ... ... ...

1 0 0 · · · 1 0 0 · · · 1


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X ′X =



ab b b · · · b a a · · · a

b b 0 · · · 0 1 1 · · · 1

b 0 b · · · 0 1 1 · · · 1
... ... ... ... ... ... ...

b 0 0 · · · b 1 1 · · · 1

a 1 1 · · · 1 a 0 · · · 0

a 1 1 · · · 1 0 a · · · 0
... ... ... ... ... ... ...

a 1 1 · · · 1 0 0 · · · a


It is not easy to find a generalized inverse (X ′X)−. Instead, we

can impose two side conditions
∑a

i=1 αi = 0 and
∑b

j=1 βj = 0 to

solve the normal equation: X ′Xβ̂ = X ′y.

X ′Xβ̂ =



abµ + b
∑

i αi + a
∑

j βj

b(µ + α1) +
∑

j βj
...

b(µ + αa) +
∑

j βj

a(µ + β1) +
∑

i αi

...

a(µ + βb) +
∑

i αi


=



abµ

b(µ + α1)
...

b(µ + αa)

a(µ + β1)
...

a(µ + βb)


X ′y = (y.., y1., · · · , ya., y.1, · · · , y.b)′

So the solution are:

β̂ = (µ̂, α̂1, · · · , α̂a, β̂1, · · · , β̂b)′,
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where

µ̂ = y../(ab) = ȳ..,

α̂i = yi./b− µ̂ = ȳi. − ȳ.., i = 1, · · · , a

β̂j = y.j/a− µ̂ = ȳ.j − ȳ.., , j = 1, · · · , b.

We now proceed to obtain the test for H0 : α1 = · · · = αa

following the outline in table 2. The hypothesisH0 : α1 = α2 = α3

can be expressed as H0 : α1 − α2 = 0 and α1 − α3 = 0. Thus

H0 is testable if α1 − α2 and α1 − α3 are estimable. Since each

expectation of observation E(yij) = µ + αi + βj is estimable, and

any linear combination of (µ+αi+βj)’s is estimable, α1−α2 and

α1−α3 are both estimable. (α1−α2 = (µ+α1+β1)−(µ+α2+β1))

First, we calculate

SS(µ, α, β) = β̂X ′y = (µ̂, α̂1, · · · , α̂a, β̂1, · · · , β̂b)′



y..

y1.

· · ·
ya.

y.1

· · ·
y.b


= ȳ..y.. +

a∑
i=1

(ȳi. − ȳ..)yi. +

b∑
j=1

(ȳ.j − ȳ..)y.j

=
y2..
ab

+ (

a∑
i=1

y2i.
b
− y2..

ab
) + (

b∑
j=1

y2.j
a

− y2..
ab

),
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since
∑

i yi. = y.. and
∑

j y.j = y...

The error sum of squares SSE is given by

y′y − β̂
′
X ′y =

∑
ij

y2ij −
y2..
ab

− (

a∑
i=1

y2i.
b
− y2..

ab
)− (

b∑
j=1

y2.j
a

− y2..
ab
).

To obtain β̂
′
2X

′
2y in table 2, we use the reduced model yij =

µ + α + βj + ϵij = µ + βj + ϵij, where α1 = α2 = α3 = α and

µ + α is replaced by µ. The normal equations X ′
2X2β̂2 = X ′

2y

for the reduced model are

abµ̂ + aβ̂1 + aβ̂2 = y..

aµ̂ + aβ̂1 = y.1

aµ̂ + aβ̂2 = y.2.

Using the side condition β̂1 + β̂2 = 0, the solution to the reduced

normal equations is easily obtained as

µ̂ = ȳ.., β̂1 = ȳ.1 − ȳ.., · · · , β̂b = ȳ.b − ȳ...

Thus, we have

SS(µ,β) = β̂
′
2X

′
2y = µ̂y..+β̂1y.1+· · ·+β̂by.b =

y2..
ab

+(

b∑
j=1

y2.j
a
−y2..
ab
).

SS(α|µ,β) = β̂
′
X ′y − β̂

′
2X

′
2y =

a∑
i=1

y2i.
b
− y2..

ab
.

The test is summarized in table 5. The test statistic for H0 : β1 =

· · · = βb can be obtained similarly.
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Table 5: ANOVA for two-way models

Source of Variation d.f. Sum of Squares F -Statistic

Due to α adjusted for µ and β a− 1 SS(α|µ,β) =
∑a

i=1
y2i.
b − y2..

ab F1 =
SS(α|µ,β)/(a−1)
SSE/(a−1)(b−1)

Due to β adjusted for µ and α b− 1 SS(β|µ,α) =
∑b

j=1

y2.j
a − y2..

ab F2 =
SS(β|µ,α)/(b−1)
SSE/(a−1)(b−1)

Error (a− 1)(b− 1) SSE = y′y − β̂
′
X ′y

Total ab− 1 SST =
∑

ij y
2
ij −

y2..
ab
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