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ABSTRACT

We revisit the classic problem of estimation of the bi-

nomial parameters when both parameters n, p are un-

known. We start with a series of results that illustrate

the fundamental difficulties in the problem. Specifically,

we establish lack of unbiased estimates for essentially any

functions of just n or just p. We also quantify just how

badly biased the sample maximum is as an estimator of

n. Then we motivate and present two new estimators

of n. One is a new moment estimate and the other is a

bias correction of the sample maximum. Both are easy

to motivate, compute, and jackknife. The second esti-

mate frequently beats most common estimates of n in

the simulations, including the Carroll-Lombard estimate.

This estimate is very promising. We end with a family

of estimates for p; a specific one from the family is com-

pared to the presently common estimate max{1− s2

X
, 0}
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and the improvements in mean squared error are often

very significant. In all cases, the asymptotics are derived

in one domain. Some other possible estimates such as a

truncated MLE and empirical Bayes methods are briefly

discussed.
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1 Introduction

Estimation of the Binomial parameters when n, p are

both unknown has remained a problem of some noto-

riety over half a century. Although estimation of p when

n is known is the textbook problem, estimation of the n

parameter with p too unknown has generated quite some

literature. Classic literature on this problem includes Hal-

dane(1941), Feldman and Fox(1968), Olkin,Petkau and

Zidek(1981), Carroll and Lombard(1985), Lindsay(1985),

Raftery(1988), and Hall(1994). The software reliability

literature also includes a substantial body of work that

relates to the binomial n problem when p is unknown;

see Basu(2003), Basu and Ebrahimi(2001) for many ref-

erences and Bayesian approaches, and Zacks et.al.(1990)

for sequential approaches and further references. The

problem continues to be important and attractive on at

least four grounds : (i) it is known to be a fundamentally

difficult problem, with underestimation of n being a seri-

ous practical handicap; (ii) easily computable and easily

motivated estimates are still generally lacking, although

the Carroll-Lombard(CL) estimate (1985), the best es-

timate available to date, has fine overall performance;

(iii) the problem exhibits an inherent instability with the

common estimates of n being vulnerable to massive fluc-
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tuations under slight perturbations of one or two sample

values; and (iv) the many interesting practical applica-

tions, ranging from species diversity estimation to error

counting in software codes. The estimation of p when n

is unknown is also an interesting problem, and indeed has

produced less literature than the corresponding problem

of estimating the n parameter. We address both prob-

lems in this article.

Bias manifested in the form of severe underestimation

is one of the hardest features of the binomial n prob-

lem. In section 2, we establish the lack of unbiased esti-

mates essentially for any nontrivial function of n or of p.

In particular, neither n nor p are unbiasedly estimable.

The result is worth recording due to its generality and

for historical completeness. It is interesting that Fisher

did not take the binomial n problem seriously. Fisher’s

argument was a formally correct one, but overly opti-

mistic. Fisher argued that the binomial n problem is not

a very interesting one because with k iid sample values

X1, X2, . . . , Xk, the sample maximum X(k)
a.s.→ n, and

hence, X(k) = n(a.s.) for all large k. While this is a tech-

nically correct statement, in section 3 we show the nearly

complete practical irrelevance of this technical fact by

giving an expression for the smallest value of k required
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to make P (X(k) ≥ m) ≥ 1 − α, with m, n → ∞ and

0 < α < 1 any fixed constant. For example, the smallest

k such that P (X(k) ≥ n
2) ≥ .5 is 31,500 when the true

n is 100 and the true p is .3. Of course, we never have

the luxury of such large sample sizes in practical studies,

such as independent aerial surveys for counting species

or employing readers to count software errors. It is true

that it is well known that the sample maximum X(k) is

not a reliable estimate of n. Our result goes to show just

how unreliable it is. It also gives a strong hint that other

estimates may also have a bias problem, which in fact is

true of many other currently available estimates.

In section 4, we introduce two new estimates of n.

The first estimate is a new moment estimate, but uses

X(k), X and s2, as opposed to just X and s2. It is triv-

ial to compute, easy to jackknife, easy to motivate, and

simulations show that it is a fine estimate overall, with

its best performance when p is small, and n is small or

moderate. We also derive its asymptotic theory in one do-

main. The asymptotics show an interesting phenomenon;

the variance of the asymptotic distribution does not in-

volve the nuisance parameter p. This is an unexpected,

and yet positive feature; for example, if we were to use

the asymptotic theory to construct a confidence interval,
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we can avoid estimating the nuisance parameter p. The

second estimate is a bias correction of the sample max-

imum X(k). The bias correction is done in an unusual

way. Using certain bounds in van Zwet(1967) on the ex-

pected values of Beta order statistics, we obtain a bound

on the average bias of X(k), averaged over p. We then

obtain an estimate for this bound on the average bias,

and subtract it off from X(k) to produce a bias corrected

estimate of n. In all the simulations we did, this estimate

performs remarkably well, and beats even the Carroll-

Lombard estimate under many configurations of k, n, p.

We are quite excited by the performance of this estimate.

Section 4 ends with explicit expressions for the jackknifed

versions of each of these two estimates of n, and some fur-

ther simulations of bias reduction after jackknife.

In section 5, we address estimation of p. It is obvious

that estimation of n and estimation of p are linked to-

gether, in that if we had a good estimate of n, we could

hope to find good estimates for p and vice versa. Thus,

by using the new moment estimate of n presented in sec-

tion 3, we give a two-parameter family of estimates for p

in section 5. Again, these estimates all use X(k), X and

s2. We derive the asymptotics for these estimates as well.

The variance function in the limiting distribution involves
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the two free parameters in the definition of the estimates.

The section ends with a discussion on choosing the two

free parameters and some simulations to compare a spe-

cific estimate from the family with the popular estimate

max{1 − s2

X
, 0}.

To summarize, we quantify the severity of the bias

problem by a collection of results. We present two new

estimates of n. Both show promise, and in particular the

estimate obtained as a bias-correction of X(k) seems to be

a really promising one. We also give a new two-parameter

family of estimates of p. And in all cases, we derive the

asymptotics of the estimates in one domain, and exam-

ine their actual performance for various configurations of

k, n, p by simulations. These are the main contributions

made in this article.

2 Nonexistence of Unbiased Estimates

Although exact unbiasedness is not generally considered

to be important in modern statistics, we provide two re-

sults on nonexistence of unbiased estimates to illustrate

the difficulty of obtaining good estimates in this problem.

In fact, as far as estimation of n is considered, severe un-

derestimation is one of the most crippling phenomena in
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the problem. Thus, the results on nonexistence of unbi-

ased estimates highlight that aspect of the problem.

Theorem 1 Let X1, X2, . . . , Xk be iid observations

from a Bin(n, p) distribution, with n, p being both un-

known, n ≥ 1, 0 < p < 1.

a) If g(n) is any nonconstant function of n, there does

not exist an unbiased estimate for g(n);

b) If g(p) is any function of p such that g′(p) exists in

a neighborhood of p = 0 and such that c = limp→0 g′(p)

exists, and is finite and nonzero, then there does not exist

an unbiased estimate for g(p).

Proof a) Suppose an unbiased estimate h(X1, X2, . . . , Xk)

exists. Then, ∀n, p, En,ph(X1, X2, . . . , Xk) = n. We

may assume without loss of generality that h is a permu-

tation invariant function. Then, using n = 1,

∀p, En=1,ph(X1, X2, . . . , Xk) = 1

⇒ (1−p)kh(0, 0, . . . , 0)+kp(1−p)k−1h(1, 0, . . . , 0)+

. . . + pkh(1, 1, . . . , 1) = 1∀p;

Taking a limit as p → 0, one obtains h(0, 0, . . . , 0) =

1. (1)

Next, using n = 2,

8



∀p, En=2,ph(X1, X2, . . . , Xk) = 2

⇒ ∑k
i=0

∑k−i
j=0

k!
i!j!(k−i−j)!(1− p)2i(2p(1− p))jp2(k−i−j) =

2∀p; (2)

Again, taking a limit as p → 0, one obtains h(0, 0, . . . , 0) =

2, thus giving a contradiction to (1).

b) We assume as in part a) that a permutation invari-

ant unbiased estimate h(X1, X2, . . . , Xk) exists. Then,

using n = 1,

∀p, h(0, 0, . . . , 0)(1−p)k+kh(0, 0, . . . , 0, 1)p(1−p)k−1+

. . . + h(1, 1, . . . , 1)pk = g(p);differentiating with respect

to p and taking a limit as p → 0, one obtains :

−kh(0, 0, . . . , 0) + kh(0, 0, . . . , 0, 1) = c. (3)

Next, taking n = 2, and differentiating the equation

∑k
i=0

∑k−i
j=0

k!
i!j!(k−i−j)!(1−p)2i(2p(1−p))jp2(k−i−j) = g(p)

with respect to p, and finally taking a limit as p → 0,

one obtains :

-2kh(0,0,. . . ,0) + 2kh(0,0,. . . ,0,1) = c (4),

which contradicts (3), as c was assumed to be nonzero

and finite.

9



3 Estimation of n : Severity of Bias

The most profound difficulty in estimating the binomial

n parameter when p is unknown is the severe underesti-

mation of n, especially if either the true n is large, or the

value of p is small. The underestimation is generally so

drastic as to make many of the common estimates essen-

tially useless. We illustrate the underestimation problem

with the sample maximum X(k) as the estimate of n. Al-

though it is generally known that X(k) underestimates n

seriously, the results below provide some precise quantifi-

cation of just how bad the bias is. It also suggests that

other estimates may have a bias problem as well, if X(k)

has such a severe problem.

First, we give a numerical example.

Example 1 This numerical example illustrates the

serious difficulties in avoiding drastic underestimation of

n for small or moderate values of p, and strikingly so

when the true n is large.
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Table 1: E(X(k)); k = 25

p

n .1 .2 .3

25 5.78 9.17 12.15

50 9.52 15.82 21.53

100 16.26 28.14 39.18

200 28.72 51.40 72.92

Thus, with p in the range of .1 to .3, with as many as

25 independent searches, the sample maximum typically

estimates n as only about 20% to 40% of its true value.

The next Table gives the smallest value of k for which

P (X(k) ≥ n
2) ≥ .5.
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Table 2: Smallest k such that P (X(k) ≥ n
2) ≥ .5

p

n .1 .2 .3

25 4.25 × 106 1880 40

50 6.85 × 1011 331,000 293

100 — 3.25 × 1010 31,500

The numbers in Table 2 are staggering and in no prac-

tical estimation problem in real life, so many independent

samples would be available. Note also that the demand

in Table 2 is very minimal; we only ask that the estimate

is at least as large as 50% of the true value with only a

50% probability.

The following theorem quantifies the smallest k re-

quired to have P (X(k) ≥ m) ≥ 1 − α, for given α.

Theorem 2 Let m, n → ∞ such that n
m = t is an

integer, and δ = 1
t > p. Let 0 < α < 1. Then the

smallest k such that P (X(k) ≥ m) ≥ 1 − α satisfies

k ≥ (− log α)(δ−p)
p
√

1−δ
( pq

1
δ
−1

δ(1−δ)
1
δ
−1

)−m
√

2mπ(1 + o(1)) (5).
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For the proof of the theorem, we need the following

lemma.

Lemma 1 Let Y ∼ Beta(n − m, m + 1). Then,

P (Y ≥ 1 − p) ≤ p(1−p)
m−np fn−m,m+1(1 − p), where fu,v de-

notes the density function of the Beta(u, v) distribution.

The proof of this lemma can be seen in DasGupta(2000).

Proof Obviously, P (X(k) > m) ≥ 1−α ⇔ P (X(k) ≤
m) ≤ α ⇔ P (X1 ≤ m)k ≤ α, where X1 ∼ Bin(n, p).

By a well known identity, P (X1 ≤ m) = P (Y ≤
1−p) ≥ 1− p(1−p)

m−np fn−m,m+1(1−p), where Y ∼ Beta(n−
m, m + 1), the last inequality a consequence of Lemma

1.

Now, P (X(k) ≥ m) ≥ 1 − α ⇔ k ≥ − log α
− log P (X1≤m) ≥

− log α

− log(1−p(1−p)
m−np fn−m,m+1(1−p))

= − log α
p(1−p)
m−np fn−m,m+1(1−p)(1+o(1))

. (6)

Using now the formula for the Beta density fn−m,m+1(1−
p) = n!pm(1−p)n−m−1

m!(n−m−1)! , Stirling’s approximation, and writ-

ing q for 1− p, we have from (6), after a page of algebra

which we omit for brevity of space,

p(1−p)
m−np fn−m,m+1(1−p) = e−nnn+1

2 n−m
m−npq

n(p
q)

m 1

e−mmm+1
2 em−n(n−m)n−m+1

2
√

2π

o(1))
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=p
√

1 − δqn(p
q)

m(1
δ−1)m 1

(δ−p)
√

2mπ(1−δ)m(1−δ)
m(1

δ
−1)

(1+

o(1)),

, on using that m
n = δ. (7)

¿From (7), the stated result in the theorem follows on

some more algebra.

Remark Theorem 2 shows the exponential growth

of the value of k required for X(k) to exceed m with a

prescribed probability as m → ∞ and gives a theoretical

explanation for why the numbers in Table 2 are so large.

4 Two New Estimates of n

In this section, we propose two new estimates of n when p

too is unknown. One of them is a new moment estimate

and the other is an estimate obtained by bias correction

of the sample maximum X(k). The moment estimate

is easier to compute, has good overall performance, and

is the better of the two when p is small, less than .1

or so. The second estimate is a bit more cumbersome

to compute, requiring quantiles of Beta distributions for

computation, but still much easier to compute than the

Carroll-Lombard estimate, and has excellent performance

for larger p.
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4.1 A New Moment Estimate

First we motivate the estimate. Consider the identity

n = nα+1(npq)α

(np)α(nq)α . Substituting the sample maximum X(k)

for n, the sample variance s2 for npq, the sample mean

X for np, and X(k) − X for nq = n − np, one has the

estimate :

n̂1 =
Xα+1

(k) (s2)α

X
α
(X(k)−X)α

. (8)

This is the first of the two estimates, and is a moment

estimate. We first derive its asymptotic distribution. It

is interesting that n̂1 has an asymptotic distribution free

of the nuisance parameter p, a surprising and positive

property.

Theorem 3 For fixed n, as k → ∞,
√

k(n̂1 − n) L⇒
N(0, 2α2n(n − 1)).

Proof Since X(k) → n in probability exponentially,

by Slutsky’s theorem,
√

k(n̂1−n) and
√

k(Tk−n), where

Tk = nα+1(s2)α

X
α
(n−X)α

have the same limiting distribution. We

find the limiting distribution of
√

k(Tk − n) by an appli-

cation of the delta theorem. We mention below only the

main steps.

The following follow from straightforward calculations
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:

(a) ∂Tk
∂X

= −αnα+1X
−α−1

(s2)α(n − 2X)(n − X)−α;

(b) ∂Tk
∂s2 = αnα+1X

−α
(n − X)−α(s2)α−1;

(c) with µ = np, σ2 = npq, ∂Tk
∂X

|µ,σ2 = −α(1−2p)qα(1−p)−α−1

p ;

(d) ∂Tk
∂s2 |µ,σ2 = α

pq ;

(e) µ3 = E(X1 − µ)3 = np(2p2 − 3p + 1), and µ4 =

E(X1 − µ)4 = npq(1 + 3(n − 2)p − 3(n − 2)p2).

Since
√

k[(X, s2)−(µ, σ2)] L⇒ N2(0, 0, σ
2, µ4−σ4, µ3),

it follows from the expressions in (a)-(e) above by an

application of the delta theorem that
√

k(Tk − n) L⇒
N(0, 2α2n(n − 1)), after some more algebra. We omit

the algebra.

Remark The asymptotic variance is therefore a de-

creasing function of α. However, in fixed samples, the

variance is not minimized by using α = 0, and typically,

the choice α = 1 is a very good one in the range of (n, p)

values we tried in the mean squared error simulations.
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4.2 The Second Estimate

The results in Section 3 illustrate the uselessness of X(k)

as an estimate of n due to its severe bias. We now propose

an estimate of n obtained after a bias correction of X(k).

The estimate performs surprisingly well, and beats the

Carroll-Lombard estimate in our simulations for many

combinations of (k, n, p). The estimate is motivated be-

low.

E(X(k)) =
∑n−1

i=0 P (X(k) > i) =
∑n−1

i=0 Pi+1,n−i(Y(1) ≤
p), where Y(1) denotes the minimum of an iid sample of

size k from a Beta(i+1, n− i) distribution; this relation

between the binomial and the Beta distribution is well

known.

Therefore,E(X(k)) = n− ∑n−1
i=0 Pi+1,n−i(Y(1) > p), and

hence,

∫ 1
0 (E(X(k)))dp = n − ∫ 1

0 Pi+1,n−i(Y(1) > p)dp

= n − ∑n−1
i=0 Ei+1,n−i(Y(1)). (10)

Now, by a result in van Zwet(1967), for 0 ≤ i ≤
n − 2, Ei+1,n−i(Y(1)) ≤ F−1

i+1,n−i(
1
k), and for i = n −

1, Ei+1,n−i(Y(1)) ≤ F−1
n,1 ( 1

k+1) = ( 1
k+1)

1
n , where F−1

r,s de-

notes the quantile function of the Beta(r, s) distribution.
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Substituting these bounds in (10), one obtains the fol-

lowing bound on the average bias of X(k) :

∫ 1
0 (E(X(k)) − n)dp ≥ −∑n−2

i=0 F−1
i+1,n−i(

1
k) − ( 1

k+1)
1
n .

(11)

Treating, as a heurism, the lower bound on the average

bias as an equality, and ignoring the small number ( 1
k+1)

1
n ,

a bias corrected estimate for n is obtained :

n̂2 = X(k) +
∑n̂−2

i=0 F−1
i+1,n̂−i(

1
k),

where n̂ is some suitable (preliminary) estimate of n.

We use the integer part of our previously introduced es-

timate n̂1 as this preliminary estimate.

Thus, our second estimate of n is :

n̂2 = X(k) +
∑[n̂1]−2

i=0 F−1
i+1,[n̂1]−i(

1
k), (12)

where [n̂1] is the integer part of n̂1.

4.3 Asymptotic Distribution of n̂2

Theorem 4 For fixed n, as k → ∞, (nk)
1

n−1(n̂2−n) L⇒
δ1, where δ1 denotes a point mass at 1.

Proof Let Ak = {[n̂1] = n}, k ≥ 1. Then, on the set
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Ak, n̂2 = X(k)+
∑n−2

i=0 F−1
i+1,n−i(

1
k). Next, note that, for any

0 < x < 1, and i = 0, 1, . . . , n − 1, by a simple calcula-

tion, Fi+1,n−i(x) = n!
i!(n−i−1)!

∑n−i−1
j=0 (−1)j (n−i−1)!

j!(n−i−j−1)!
xi+j+1

i+j+1 .

(13)

Hence, for i = 0, 1, . . . , n−1, Fi+1,n−i(x) = n!
i!(n−i−1)!

xi+1

i+1 (1+

o(x)), as x → 0. This implies that for i = 0, 1, . . . , n −
1, F−1

i+1,n−i(
1
k) = ( n!

(i+1)!(n−i−1)!k)−
1

i+1(1+o(1)), as k → ∞.

Summing over i, (nk)
1

n−1
∑n−2

i=0 F−1
i+1,n−i(

1
k) = 1 + o(1), as

k → ∞. (14)

Thus, P (|(nk)
1

n−1(n̂2 − n) − 1| > ε)

≤ P (|(nk)
1

n−1(n̂2 − n) − 1| > ε
⋂
Ak

⋂{X(k) = n}) +

P (Ac
k) + P (X(k) 6= n), and since P (Ac

k) → 0 as n̂1 is a

consistent estimate, and since evidently P (X(k) 6= n) →
0, the statement of the theorem follows from here by using

(14).

Discussion For reasonably large n, the norming con-

stant (nk)
1

n−1 would be approximately 1. So Theorem 4

says that n̂2 would vary slightly around n + 1. Recall,

however, that the domain of asymptotics is when k → ∞,

with n fixed. The speed of convergence is slow. Thus, in

reality, the behavior of n̂2 is not reflected in Theorem 4

unless k
n is about 10, in our simulations that we did not
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report here.

4.4 Some Other Possible Approaches

Of course, other approaches to estimation of the n pa-

rameter are possible, and we suspect that other reason-

able estimates can be found. For brevity of space and

purposes of focus, we only briefly mention a few other

possible approaches, but do not investigate them here.

The MLE is always worth an investigation. Indeed,

in the binomial n problem, the properties of the MLE

have been studied quite extensively. It has some serious

drawbacks; the drawbacks form a primary motivation for

the many other estimates researchers have offered. It is

very unstable, and need not be finite with probability 1.

One possibility is to truncate the MLE at X(k) + c for

some suitable positive constant c. When n is small, and

p in the range of .3 or above, this type of an estimate is

very good. It is not good for large n, in the range of 200,

or if p is small. Another possibility, specifically directed

towards the case of large n and small p, is to treat the

problem as a Poisson one, and assign (perhaps indepen-

dent) priors to λ = np and p and estimate n treating it

as n = λ
p . Empirical Bayes with such a formulation is

apparently promising, but the only investigation seems

20



to be DasGupta, Haff and Strawderman(1998). It would

be worth further investigation. Yet another possibility is

to use appropriate noninformative priors for n, p and

use posterior means or medians. A conceptual difficulty

is that the n parameter is discrete, and so, for example,

Jeffrey priors are not defined. We have some ideas on

this, but do not report them here.

4.5 Comparative Performance of the Estimates

We present simulated mean squared errors and the bias

of four estimates for some combinations of (k, n, p). The

estimates are X(k), n̂1, n̂2, and the Carroll-Lombard(CL)

estimate. We take values of p to be small to moderate; we

do not simulate for larger values of p because the problem

of estimating n is not that difficult unless p is small or

moderate.
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Table 3: Expected values of various estimates

n p k X(k) n̂1 n̂2 C-L

20 .1 5 3.6 8.0 6.2 13.6

50 .1 10 8.47 18.93 16.58 13.85

50 .3 10 20.0 53.6 43.6 45.0

100 .1 15 15.44 39.58 31.23 27.9

100 .3 15 38.1 125.5 93.4 96.6

200 .1 25 28.8 85.49 65.84 55.5

200 .3 25 72.8 291.9 161.1 189.6

Discussion

For small p, the moment estimate n̂1 looks the best

unless n is small, in which case the Carroll-Lombard es-

timate seems to have the least bias. Notice in particular

how much better n̂1 does than the Carroll-Lombard esti-

mate when n is large and p is small, arguably the most

interesting case in practical applications. For larger p, the
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Carroll-Lombard estimate has the least bias, although n̂2

is competitive. However, bias is only part of the assess-

ment and we need to look at the full mean squared error.

It is considered next.

Table 4: Mean Squared Error of Various Estimates

n p k X(k) n̂1 n̂2 C-L

20 .1 5 269 176 201 47

50 .1 10 1727 1050 1145 1333

50 .3 10 903 348 161 216

100 .1 15 7154 3831 4785 5245

100 .3 15 3837 1941 386 878

200 .1 25 29313 13566 18122 20957.6

200 .3 25 16179 12534 1958 4233

Discussion

Quite interestingly, the mean squared errors present

the same qualitative comparison as does the bias. For
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small p, the moment estimate n̂1 is the best unless n is

small, in which case the Carroll-Lombard estimate is the

best. When p is not small, the bias-corrected estimate

n̂2 is clearly the best; particularly impressive is by how

much in these simulations n̂2 beats the Carroll-Lombard

estimate for n = 50, 100, 200 and especially for the largest

value n = 200.

The bias-corrected estimate n̂2 appears to be extremely

promising and would be worth further investiagtion at

other configurations of k, n, p.

4.6 Further Bias Reduction by Jackknife

Because the estimates n̂1, n̂2 both have explicit formulae,

each estimate can be jackknifed with minimal computa-

tion in order to achieve some further reduction in bias. In

fact, for both n̂1, n̂2, an explicit formula for the jackknifed

version can be produced, which can be directly used for

further use, e.g., simulation of bias and mean squared er-

ror. The expression for the jackknifed version is stated

below. The derivation of this expression involves some

straightforward but tedious calculation, and we omit it.

Proposition 1 The jackknifed version of n̂1 equals

n̂1,J = 1
k

∑k
i=1 n̂1,−i, where
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n̂1,−i =
k−1
k−2X2

(k)[(k−1)2s2−k(X(i)−X)2]

(kX−X(i))[(k−1)X(k)−kX+X(i)]
, for i < k,

(15) and

n̂1,−k =
k−1
k−2X2

(k−1)[(k−1)2s2−k(X(k)−X)2]

(kX−X(k))[(k−1)X(k−1)−kX+X(k)]
. (16)

An explicit formula for the jackknifed version of n̂2

follows from the expression in Proposition 1 above.

Proposition 2 The jackknifed version of n̂1 equals

n̂2,J = 1
k

∑k
i=1 n̂2,−i, where

n̂2,−i = X(k) +
∑n̂1,−i−2

j=0 F−1
j+1,n̂1,−i−j(

1
k−1), for i <

k, (17) and

n̂2,−k = X(k−1)+
∑n̂1,−k−2

j=0 F−1
j+1,n̂1,−k−j(

1
k−1). (18)

Some simulations on the amount of bias reduction due

to jackknife is presented in the next table. The bias re-

duction due to jackknife in n̂1 is quite impressive. We

noticed in our simulations that jackknife did not help for

the other estimate n̂2; so we do not report the results on

jackknifing for n̂2.
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Table 5: Bias Before and After Jackknife

n p k n̂1 n̂1,J n̂2

200 .3 25 91.9 52.7 38.9

100 .3 15 24.5 10.4 6.6

50 .3 10 3.6 −1.6 6.4

5 Estimation of p

Using the one parameter family of estimates n̂1 for n, we

propose a two parameter family of estimates for p. Again,

first we motivate the estimates. For 0 ≤ λ ≤ 1, write p

as p = (np)2λ−1(np−npq)1−λ

nλ . Substituting X for np, s2 for

npq, and n̂1 for n, on a little algebra, the following two

parameter family of estimates for p is obtained :

p̂ =
X

(α+2)λ−1
(X−s2)1−λ(X(k)−X)αλ

X
(α+1)λ
(k) (s2)αλ

(19)

We present the asymptotic distribution of p̂ below.

Theorem 5 For fixed n, as k → ∞,
√

k(p̂ − p) L⇒
N(0, τ 2(α, λ)), where
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τ 2(α, λ) = n2(αλ−1)p2(αλ−1
2)[q(2 − 2nq − 3p) + 4(n −

1)qλ((α + 1)p − 1) + 2(n − 1)λ2((α + 1)p − 1)2]

(20).

Proof The proof is similar to that of Theorem 3.√
k(p̂−p) and

√
k(T ∗

k−p), where T ∗
k = X

(α+2)λ−1
(X−s2)1−λ(n−X)αλ

n(α+1)λ(s2)αλ

have the same limiting distribution. The limiting distri-

bution of
√

k(T ∗
k − p) follows from the joint bivariate

normal limiting distribution for (X, s2) by applying the

delta theorem, as in Theorem 3. The intermediate alge-

bra is messy but straightforward, which we omit.

Remark The free parameters α, λ are to be chosen.

There are clearly no uniformly best choices for all n, p.

In our simulations, α, λ ≈ 1 gave about the best values

for bias and mean squared error for various combinations

of n, p, k. We report a small simulation for the mean

squared error in the next table using α = λ = 1; for some

meaningful assessment, we compare its mean squared er-

ror and bias with that of the presently common moment

estimate of p given by p̃ = max{1− s2

X
, 0}. A discussion

will follow suit.
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Table 6: Mean Squared Error and Bias of p̂ and p̃

n p k E(p̂ E(p̃) MSE of p̂ MSE of p̃

50 .1 10 .322 .226 .077 .073

50 .3 10 .311 .351 .017 .064

100 .1 15 .280 .204 .042 .054

100 .3 15 .262 .334 .008 .049

200 .1 25 .245 .170 .025 .034

200 .3 25 .219 .298 .009 .033

Discussion

It seems that the mean squared error of the new es-

timate p̂ we propose is always smaller than that of the

moment estimate p̃; the mean squared error of p̂ is many

factors of magnitude smaller for the larger true value of

p, namely p = .3. This is indeed encouraging.

As regards bias, generally the moment estimate p̃ is

better, with a couple of exceptions in the simulation pre-
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sented above. Thus, it seems that while the moment es-

timate p̃ has a smaller bias, it suffers from a much larger

variance than our new proposed estimate p̂. But we must

be cautious as the simulation is limited; however, the find-

ings as far as these simulations are quite promising.
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