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Abstract

The maximum cell frequency in a multinomial distribution is of current in-

terest in several areas of probability and statistics. Different asymptotics

apply for different rates of growth for the number of cells and the number of

units. Statistical software for calculating the P-values or for calculating the

percentiles is not presently available. Using the Poissonization theorem for

multinomials, exact P-values and exact 95th and 99th percentiles are tabu-

lated for a selection of values of the number of cells and units. The sparse

multinomial case is included to some extent. Using the asymptotic extreme

value theory, approximate formulas for percentiles are given for use outside

of the range of the tables provided here.
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1 Introduction

The maximum cell frequency in a multinomial distribution is of wide interest

in cluster detection, data mining, goodness of fit, and in occupancy problems

in probability. It also arises in sequential clinical trials, and in paranormal ex-

periments. See some evidence in Diaconis and Graham (1981), Levin (1983),

and Rukhin (2006). The multinomial maximum has also become important

in the modern large p small n problems, where a small number of units are

allocated among a large number of categories. See Hall and Titterington

(1987), Koehler and Larntz (1980), Simonoff (1983), and Zelterman (1987)

for treatment of sparse multinomial data. We provide some coverage of the

sparse case in what follows. Examination of the exact P-values in the sparse

case shows the need for much caution before concluding systematic departure

from uniformity, because one should matter of factly expect a large number

of empty cells, coupled with large values for the maximum cell count.

Most people do not have a very good intuition about what constitutes an

extreme value for an extreme type statistic. If fifteen of fifty rolls of a die

resulted in one particular face, we may suspect that the die has been ma-

nipulated. Actually, in that example, it is not so surprising to see some face

come up fifteen times, when we actually compute the P-value. Asymptotic

theory, both first order and higher order, for the maximum cell frequency

in a multinomial distribution certainly exists; see Kolchin et al. (1978),

and Barbour et al. (1992). These can be and are sometimes used to ap-

proximate P-values based on a maximum cell frequency, i.e., to approx-

imate tail probabilities P (max{f1, f2, · · · , fK} ≥ m) in the equiprobable

case, where f1, f2, · · · , fK denote the cell frequencies in a K-cell multino-

mial, and m is a given number. It is a classic result in probability that

Poissonizing the total number of units in a multinomial problem renders

the cell frequencies to become independent Poisson random variables. Pre-

cisely, if N ∼ Poisson(λ), and given N = n, (f1, f2, · · · , fK) has a multino-

mial distribution with parameters (n, p1, p2, · · · , pK), then unconditionally,

f1, f2, · · · , fK are independent and fi ∼ Poisson(λpi). It follows that with

any given fixed value n, and any given fixed set A in the K-dimensional

Euclidean space RK , the multinomial probability that (f1, f2, · · · , fK) be-
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longs to A equals n!c(n, λ), with c(n, λ) being the coefficient of λn in the

power series expansion of eλP ((X1, X2, · · · , XK) ∈ A), where now Xi are

independent Poisson(λpi). In the equiprobable case, i.e., when the pi are all

equal to 1
K

, this leads to the equality that P (max{f1, f2, · · · , fK} ≥ x) is
n!

Kn ×The coefficient of λn in (
∑x−1

j=0
λj

j!
)K . As a result, we can compute the P-

value P (max{f1, f2, · · · , fK} ≥ x) exactly whenever we can have a computer

produce for us the coefficient of λn in the expansion of (
∑x−1

j=0
λj

j!
)K . Common

statistical software does not treat this problem, but it is possible to write a

code on symbolic software to produce this coefficient.

The multinomial maximum being of enough interest right now, and with

there being no common statistical software that computes these P-values

for testing for uniformity, we thought that a table of the exact P-values,

and moreover the 95th and the 99th percentiles would be useful. Obviously,

necessarily any such table has to choose values of n and K. We generally

limit ourselves to n ≤ 500 and to K ≤ 12. The values K = 7, 12 are of

some special interest, being the number of days in a week, and the num-

ber of months in a year. Likewise, K = 30 and K = 365 would also be

of some special importance; but we did not go that far here. One final re-

mark is that the 95th percentile was chosen to be the first value x such that

P (max{f1, f2, · · · , fK} ≤ x) ≥ .95, unless the previous value gave a probabil-

ity extremely close to .95. Similar comments apply about the 99th percentile.

The 95th and the 99th percentiles are tabulated first, and then more elabo-

rate tables of the actual P-values are given. These P-values are all exact; no

simulations or approximations are involved.

2 Approximate Formulas for Practical Use

It is obviously impossible to produce tables of percentiles for all or even many

combinations of n and K. On the other hand, no readymade statistical soft-

ware for accurate calculation of the percentiles or the tail probabilities seems

to be currently available. Therefore, approximate formulas for specific per-
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centiles of the multinomial maximum have practical value. We provide here

such approximate formulas when n and K are both large. The formulas are

based on asymptotic theory for the multinomial maximum. The asymptotics

for the maximum frequency are known to depend on the relative growth of

n and K. We provide approximate formulas for percentiles when n and K

are both large, and moreover n is substantially larger than K. It is in this

case that the formulas are the most trustable and the easiest to derive.

If K is substantially larger than n, then eventually the distribution of the

multinomial maximum becomes a two-point distribution. This is why we see

the rapid drop in the P-values in our tables under the sparse case. It is not

very useful to provide something like a 95th percentile when the distribution

is essentially two valued.

If n and K are comparable, in the sense that n
K log K

is not much larger

than one, the distribution of the multinomial maximum becomes more dis-

persed and asymptotically it is supported on a countable set of integers,

lower bounded by a suitable integer. However, identifying this lower bound

in a given problem so as to make the approximation accurate is problematic.

It involves a case by case trial and error, defeating the entire purpose of a

theoretical approximate formula. This is why we limit ourselves to the case

when n is substantially larger than K.

The approximate formula is based on the following theorem (see Kolchin et

al. (1978), pp 96, Theorem 3, after correcting the typographical errors in the

statement). In the theorem, fmax denotes max{f1, f2, · · · , fK}.

Theorem Let (f1, f2, · · · , fK) ∼ Mult(n, 1
K

, · · · , 1
K

). Suppose n,K = K(n) →
∞ such that n

K log K
→ ∞. Let

µ = µ(n) =
n

K
; w = w(n) =

log K − 1
2
log log K

µ
;

ε = ε(n) the unique positive root of the equation

(1 + ε) log(1 + ε) − ε = w.
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Then,

P (
fmax − µ(1 + ε)√

n
2K log K

+
1

2
log 4π ≤ z) → e−e−z

,

for all real z.

This result leads to simple enough approximate formulas for percentiles of

fmax. A first order approximation to ε in the statement of the theorem is

ε =
√

K log K
n

, on writing log(1 + ε) ≈ ε. Inverting the CDF Q(z) = e−e−z
, for

any α, 0 < α < 1, the 100(1 − α)% percentile of Q is − log log 1
1−α

. A few

lines of algebra then produces the approximate formula for the 100(1− α)%

percentile Fα of fmax as:

Fα ≈ n

K
+

√
n log K

K
− (log log

1

1 − α
+ 1.266)

√
n

2K log K
,

provided, n,K, and n
K log K

are each large. In the above, we have used the

decimal value 1.266 for 1
2
log 4π.

In particular, approximate 95th and 99th percentiles of fmax are:

F.05 ≈ n

K
+

√
n log K

K
+ 1.205

√
n

K log K
;

F.01 ≈ n

K
+

√
n log K

K
+ 2.358

√
n

K log K
.

As a trial, if we use these approximate formulas when K = 12, n = 400, we

get F.05 ≈ 47, and F.01 ≈ 51, while the true values are 50 and 53, respectively

(see table on pp 8). As another trial case, with K = 10, n = 500, we get

F.05 ≈ 66, and F.01 ≈ 72, while the true values are 69 and 73, respectively.

The approximations seem quite good even when K is not that large.
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3 Table of Percentiles

Table of 95th and 99th Percentiles of max{f1, f2, · · · , fK}
n 95th Percentile 99th Percentile

K = 3

10 7 8

15 10 11

25 14 16

40 21 23

50 25 27

75 35 37

100 44 47

150 63 67

200 82 86

250 100 105

K = 4

10 7 8

25 12 14

40 17 19

50 20 22

75 28 21

100 36 38

150 51 54

200 65 69

250 79 83

K = 5

10 6 7

25 10 11

50 18 20

75 24 26

100 31 33

150 43 46

200 54 58

250 66 70

300 77 81
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Table of 95th and 99th Percentiles of max{f1, f2, · · · , fK}
n 95th Percentile 99th Percentile

K = 6

10 6 7

25 10 11

50 16 18

100 27 29

150 37 40

200 47 50

250 57 61

300 67 70

K = 7

25 9 10

50 14 16

100 24 26

150 33 36

200 42 45

250 51 54

300 59 63

400 76 80

K = 10

50 12 13

100 19 21

200 32 35

300 45 48

400 57 60

500 69 73
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Table of 95th and 99th Percentiles of max{f1, f2, · · · , fK}
n 95th Percentile 99th Percentile

K = 12

50 11 12

100 17 19

200 29 31

300 39 42

400 50 53

500 60 63
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4 Table of Tail Probabilities

P (max{f1, f2, · · · , fK} ≥ x) (K = 5)

x n = 25 n = 50 n = 60 n = 75 n = 100

8 .5100 1 1 1 1

9 .2311 1 1 1 1

10 .0866 1 1 1 1

11 .0278 .9995 1 1 1

12 .0077 .9497 1 1 1

13 .0018 .7646 .9996 1 1

14 .0004 .5119 .9631 1 1

15 .00007 .2960 .8143 1 1

16 .00001 .1530 .5875 .9998 1

17 1.33 × 10−6 .0721 .3707 .9750 1

18 0 .0313 .2106 .8641 1

19 0 .0126 .1099 .6733 1

20 0 .0047 .0533 .4664 1

21 0 .0016 .0241 .2936 .9999

22 0 .0005 .0102 .1711 .9851

23 0 .00015 .0041 .0933 .9119

24 0 .00004 .0015 .0480 .7680

25 0 .00001 .0005 .0233 .5878

26 0 2.46 × 10−6 .00017 .0107 .4141

27 0 0 .00005 .0047 .2724

28 0 0 .00002 .0019 .1690

29 0 0 4.07 × 10−6 .00076 .0997

30 0 0 1.03 × 10−6 .00028 .0562

31 0 0 0 .0001 .0303

32 0 0 0 .00003 .0156

33 0 0 0 .00001 .0078

34 0 0 0 3.22 × 10−6 .0037

35 0 0 0 0 .0017

36 0 0 0 0 .00074

37 0 0 0 0 .00031

38 0 0 0 0 .00012

39 0 0 0 0 .00005

40 0 0 0 0 .00002
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P (max{f1, f2, · · · , fK} ≥ x) (K = 6)

x n = 30 n = 50 n = 100 n = 120 n = 150

8 .6014 1 1 1 1

9 .2942 1 1 1 1

10 .1176 .9888 1 1 1

11 .0404 .8663 1 1 1

12 .0122 .6122 1 1 1

13 .0032 .3578 1 1 1

14 .00076 .1816 1 1 1

15 .00016 .0827 1 1 1

16 .00003 .0344 1 1 1

17 4.62 × 10−6 .0131 1 1 1

18 0 .0046 .9996 1 1

19 0 .0015 .9812 1 1

20 0 .00045 .8957 1 1

21 0 .00013 .7323 1 1

22 0 .00003 .5365 .9949 1

23 0 7.66 × 10−6 .3582 .9533 1

24 0 1.696 × 10−6 .2218 .8433 1

25 0 0 .1290 .6782 1

26 0 0 .0710 .4990 1

27 0 0 .0372 .3405 .9970

28 0 0 .0186 .2182 .9701

29 0 0 .0089 .1327 .8917

30 0 0 .00405 .0770 .7602

31 0 0 .0018 .0428 .6009

32 0 0 .0007 .0228 .4439

33 0 0 .0003 .0117 .3096

34 0 0 .0001 .0058 .2055

35 0 0 .00004 .0028 .1308

36 0 0 .00001 .0013 .0801

37 0 0 5.05 × 10−6 .00056 .0474

38 0 0 1.64 × 10−6 .00024 .0271

39 0 0 0 .0001 .0150

40 0 0 0 .00004 .0080

41 0 0 0 .00001 .0042
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P (max{f1, f2, · · · , fK} ≥ x) (K = 7)

x n = 140 n = 175 n = 200 n = 225 n = 250

27 .4027 .9991 1 1 1

28 .2650 .9855 1 1 1

29 .1649 .9321 1 1 1

30 .0977 .8238 1 1 1

31 .0555 .6746 .9974 1 1

32 .0303 .5142 .9773 1 1

33 .0159 .3683 .9169 1 1

34 .0081 .2502 .8083 .9997 1

35 .0039 .1625 .6664 .9943 1

36 .0019 .1014 .5159 .9672 1

37 .0008 .0611 .3780 .9006 1

38 .0004 .0356 .2642 .7918 .9991

39 .00016 .0201 .1773 .6558 .9897

40 .000065 .0110 .1147 .5137 .9555

41 .00003 .0059 .0719 .3831 .8834

42 .00001 .0030 .0437 .2737 .7746

43 3.73 × 10−6 .0015 .0258 .1885 .6437

44 1.35 × 10−6 .0007 .0148 .1256 .5088

45 0 .0003 .0083 .0812 .3847

46 0 .00016 .0045 .0511 .2798

47 0 .00007 .0024 .0313 .1967

48 0 .00003 .0012 .0187 .1342

49 0 .00001 .0006 .0109 .0890

50 0 5.47 × 10−6 .0003 .0062 .0576

51 0 2.20 × 10−6 .00015 .0035 .0364

52 0 0 .00006 .0019 .0224

53 0 0 .00003 .001 .0135

54 0 0 .00001 .0005 .0080

55 0 0 6.09 × 10−6 .00026 .0046

56 0 0 2.58 × 10−6 .0001 .0026

57 0 0 1.07 × 10−6 .00006 .0014

58 0 0 0 .00003 .0008

59 0 0 0 .00001 .0004

60 0 0 0 6.21 × 10−6 .0002
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P (max{f1, f2, · · · , fK} ≥ x) (K = 10)

x n = 125 n = 150 n = 200 n = 250 n = 300

18 .5958 .9903 1 1 1

19 .3864 .9301 1 1 1

20 .2264 .7859 1 1 1

21 .1225 .5882 1 1 1

22 .0622 .3952 .9999 1 1

23 .0298 .2433 .9963 1 1

24 .0136 .1397 .9676 1 1

25 .0059 .0757 .8812 1 1

26 .0024 .0390 .7336 1 1

27 .0010 .0192 .5573 1 1

28 .0004 .0091 .3904 .9983 1

29 .0001 .0041 .2558 .9833 1

30 .00005 .0018 .1585 .9302 1

31 .000015 .0007 .0937 .8241 1

32 4.96 × 10−6 .0003 .0531 .6769 1

33 1.53 × 10−6 .0001 .0291 .5173 .9992

34 0 .00004 .0153 .3710 .9907

35 0 .000016 .0078 .2522 .9568

36 0 5.53 × 10−6 .0039 .1638 .8807

37 0 1.86 × 10−6 .0019 .1023 .7624

38 0 0 .0009 .0617 .6193

39 0 0 .0004 .0361 .4745

40 0 0 .0002 .0205 .3453

41 0 0 .00007 .0113 .2405

42 0 0 .00003 .0061 .1613

43 0 0 .00001 .0032 .1046

44 0 0 4.65 × 10−6 .0016 .0659

45 0 0 1.76 × 10−6 .0008 .0403

46 0 0 0 .0004 .0241

47 0 0 0 .0002 .0140

48 0 0 0 .00008 .0080

49 0 0 0 .00004 .0044

50 0 0 0 .00002 .0024

51 0 0 0 7.12 × 10−6 .0013
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5 The Sparse Case

The sparse case corresponds to large K and comparatively smaller, and even

much smaller, values of n. Exact P-values are reported in some selected

sparse cases. Inspection of the P-values reveals an interesting phenomenon;

the P-values drop suddenly. That is, numerous empty cells and significant

clustering will typically manifest in sparse multinomial data, and a lot of

caution is needed before declaring any deviation from uniformity.

P (max{f1, f2, · · · , fK} ≥ x) (K = 50)

x n = 10 n = 20 n = 30 n = 40 n = 50

2 .6183 .9880 1 1

3 .0429 .3153 .7169 .9468 .9965

4 .0015 .0298 .1385 .3556 .6296

5 .00004 .0019 .0150 .0578 .1522

6 0 .0001 .0013 .0068 .0238

7 0 3.95 × 10−6 .00009 .0030

8 0 0 5.05 × 10−6 .00006 .0003

9 0 0 0 3.99 × 10−6 .00003

10 0 0 0 0 2.53 × 10−6

K = 100

x n = 15 n = 30 n = 50 n = 80 n = 100

2 .6687 .9922 1 1 1

3 .0411 .2931 .7880 .9976 1

4 .0012 .0221 .1504 .6050 .8738

5 .00003 .0012 .0145 .1228 .2984

6 0 .00005 .0011 .0159 .0524

7 0 1.66 × 10−6 .00007 .0017 .0071

8 0 0 3.69 × 10−6 .00015 .0008

9 0 0 0 .00001 .00008

10 0 0 0 0 7.63 × 10−6
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P (max{f1, f2, · · · , fK} ≥ x) (K = 250)

x n = 15 n = 30 n = 50 n = 80 n = 100

2 .3484 .8368 .9948 1 1

3 .0070 .0586 .2432 .6683 .8780

4 .00008 .0016 .0127 .0769 .1707

5 0 .00003 .00047 .0048 .0140

6 0 0 .00001 .0002 .0009

7 0 0 0 .00001 .00005

8 0 0 0 0 2.2 × 10−6

K = 400

x n = 20 n = 30 n = 50 n = 80 n = 100

2 .3830 .6722 .9591 .9998 1

3 .0069 .0239 .1071 .3657 .5826

4 .00007 .0004 .0033 .0210 .0495

5 0 5.28 × 10−6 .00008 .0008 .0024

6 0 0 1.41 × 10−6 .00002 .0001

7 0 0 0 0 3.19 × 10−6
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