
16 Maximum Likelihood Estimates

Many think that maximum likelihood is the greatest conceptual invention in the

history of statistics. Although in some high or infinite dimensional problems, com-

putation and performance of maximum likelihood estimates (MLEs) are problem-

atic, in a vast majority of models in practical use, MLEs are about the best that one

can do. They have many asymptotic optimality properties which translate into fine

performance in finite samples. We treat MLEs and their asymptotic properties in

this chapter. We start with a sequence of examples, each illustrating an interesting

phenomenon.

16.1 Some Examples

Example 16.1. In smooth regular problems, MLEs are asymptotically normal with

a
√

n-norming rate. For example, if X1, . . . , Xn are iid N(µ, 1),−∞ < µ < ∞, then

the MLE of µ is µ̂ = X̄ and
√

n(µ̂ − µ)
L−→ N(0, 1),∀µ.

Example 16.2. Let us change the problem somewhat to X1, X2, . . . , Xn
iid∼ N(µ, 1)

with µ ≥ 0. Then the MLE of µ is

µ̂ =

{
X̄ if X̄ ≥ 0

0 if X̄ < 0
,

i.e., µ̂ = X̄IX̄≥0. If the true µ > 0, then µ̂ = X̄ a.s. for all large n and
√

n(µ̂−µ)
L−→

N(0, 1). If the true µ = 0, then we still have consistency, in fact, still µ̂
a.s−→ µ = 0.

Let us now look at the question of the limiting distribution of µ̂. Denote Zn =
√

nX̄,

so that µ̂ =
ZnIZn≥0√

n
.

Let x < 0. Then P0(
√

nµ̂ ≤ x) = 0. Let x = 0; then P0(
√

nµ̂ ≤ x) = 1
2
. Let

x > 0. Then

P0(
√

nµ̂ ≤ x) = P (ZnIZn≥0 ≤ x)

=
1

2
+ P (0 < Zn ≤ x)

→ Φ(x).

So

P (
√

nµ̂ ≤ x) →




0 for x < 0
1
2

for x = 0

Φ(x) for x > 0
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The limit distribution of
√

nµ̂ is thus not normal; it is a mixed distribution.

Example 16.3. Consider the case when X1, X2, . . . , Xn
iid∼ N(µ, σ2), with µ known

to be an integer. For the argument below, existence of an MLE of µ is implicitly

assumed; but this can be directly proved by considering tail behavior of the likelihood

function l(µ, σ2).

Let µ̂ = MLE of µ. Then by standard calculus, σ̂2 = 1
n

∑
(Xi − µ̂)2 is the MLE of

σ2.

Consider for integer µ, the ratio

l(µ, σ2)

l(µ − 1, σ2)
= e

1
2σ2{∑

(xi−µ+1)2−∑
(xi−µ)2}

= e
1

2σ2 {n+2
∑

(xi−µ)}

= e
n

2σ2 +
2n(X̄−µ)

2σ2

= e
n

2σ2 {2(X̄−µ)+1}

≥ 1

iff 2(X̄ − µ) + 1 ≥ 0 iff µ ≤ X̄ + 1
2
. In the interval (X̄ − 1

2
, X̄ + 1

2
], there is a unique

integer. It is the integer closest to X̄. This is the MLE of µ.

Now let us look at the asymptotic behavior of the MLE µ̂.

P (µ̂ 6= µ) = P (Integer closest to X̄ is 6= µ)

= P (X̄ > µ +
1

2
) + P (X̄ < µ − 1

2
)

= 2P (X̄ > µ +
1

2
)

= 2P

(√
n(X̄ − µ)

σ
>

√
n

2σ

)

= 2

(
1 − Φ(

√
n

2σ
)

)

∼ 2φ(

√
n

2σ
)
2σ√
n

=
4σ√
2πn

e
− n

8σ2

For any c > 0,
∑
n

e−cn√
n

< ∞. Therefore,
∑
n

P (µ̂ 6= µ) < ∞ and so by the Borel-

Cantelli lemma, µ̂ = µ a.s. for all large n. Thus there is no asymptotic distribution

of µ̂ in the usual sense.
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Example 16.4. We do not need a closed form formula for figuring out the asymp-

totic behavior of MLEs. In smooth regular problems, MLEs will be jointly asymptot-

ically normal with a
√

n-norming. Suppose X1, X2, . . . , Xn
iid∼ Γ(α, λ) with density

e−λxxα−1λα

Γ(α)
. Then the likelihood function is

l(α, λ) =
e−λ

∑
xi(

∏
xi)

αλnα

(Γ(α))n
, α, λ > 0

So

L = log l(µ, σ) = α log P − λ
∑

xi + nα log λ − n log Γ(α),

where P =
∏

xi.

The likelihood equations are

0 =
∂L

∂α
= log P + n log λ − nΨ(α),

0 =
∂L

∂λ
= −

∑
xi +

nα

λ
,

where Ψ(α) = Γ
′
(α)

Γ(α)
is the digmma function. From solving ∂L

∂λ
= 0, one gets λ̂ = α̂

X̄
,

where α̂ is the MLE of α. Existence of MLEs of α̂, λ̂ can be directly concluded from

the behavior of l(α, λ). Using λ̂ = α̂
X̄

, α̂ satisfies

log P + n log α̂ − n log X̄ − nΨ(α̂) = log P − n log X̄ − n(Ψ(α̂) − log α̂) = 0

The function Ψ(α)−log α is strictly monotone and continuous with range ⊃ (−∞, 0).

So there is a unique α̂ > 0 at which n(Ψ(α̂) − log α̂) = log P − n log X̄. This is the

MLE of α. It can be found only numerically, and yet, from general theory, one can

assert that
√

n(α̂ − α, λ̂ − λ)
L−→ N(0

∼
, Σ) for some covariance matrix Σ.

Example 16.5. In non-regular problems, the MLE is not asymptotically normal

and the norming constant is usually not
√

n. For example, if X1, X2, . . . , Xn
iid∼

U [0, θ], then the MLE θ̂ = X(n) satisfies n(θ − θ̂)
L−→ Exp(θ).

Example 16.6. This example shows that MLEs need not be functions of a minimal

sufficient statistic. Suppose X1, X2, . . . , Xn
iid∼ U [µ − 1

2
, µ + 1

2
]. Then the likelihood

function is

l(µ) = Iµ− 1
2
≤X(1)≤X(n)≤µ+ 1

2
= IX(n)− 1

2
≤µ≤X(1)+

1
2
.

So any function of X1, . . . , Xn that is in the interval [X(n) − 1
2
, X(1) +

1
2
] is an MLE,

e.g., e−X̄2
(X(n) − 1

2
) + (1 − e−X̄2

)(X(1) + 1
2
) is an MLE, but it is not a function of

(X(1), X(n)), the minimal sufficient statistic.
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Example 16.7. This example shows that MLEs of different parameters can have

limit distributions with different norming rates.

Suppose X1, X2, . . . , Xn
iid∼ Exp(µ, σ) with density 1

σ
e
−x−µ

σ , x ≥ µ. By simple

calculus, the MLEs µ̂, σ̂ are

µ̂ = X(1)

σ̂ =
1

n

∑
(Xi − X(1)) = X̄ − X(1)

We can assume µ = 0 and σ = 1 for the following calculations, from which the case

of general µ, σ follows.

If µ = 0, σ = 1, then nX(1) ∼ Exp(1); thus for the general case, n(µ̂−µ)
L−→ Exp(σ).

On the other hand, if µ = 0, σ = 1, then
√

n(σ̂ − 1) =
√

n(X̄ − X(1) − 1) =√
n(X̄ − 1) −√

nX(1) =
√

n(X̄ − 1) − nX(1)√
n

L−→ N(0, 1) by the CLT and Slutsky’s

theorem. Thus, for the general case,
√

n(σ̂ − σ)
L−→ N(0, σ2). Note the different

norming constants for µ̂, σ̂.

16.2 Inconsistent MLEs

The first example of an MLE being inconsistent was provided by Neyman and

Scott(1948). It is by now a classic example and is known as the Neyman-Scott

example. That first example shocked everyone at the time and sparked a flurry of

new examples of inconsistent MLEs including those offered by LeCam (1953) and

Basu (1955). Note that what makes the Neyman-Scott example work is that, com-

pared to the number of parameters, there isn’t enough data to kill the bias of the

MLE. It is possible to find adjustments to the MLE or suitable Bayesian estimates

in many of these problems which do have the consistency property; see Ghosh (1994)

for examples and also some general techniques.

Example 16.8. Let Xij i = 1, 2, ..., n and j = 1, 2, ..., k be independent with

Xij ∼ N(µi, σ
2). Note that this is basically a balanced one-way ANOVA design

where we assume k is fixed and n → ∞. So the sample sizes of the groups are

(probably) big, but the number of groups is bigger. We want to estimate the common

variance of the groups. By routine calculus, the MLEs are

µ̂i = X̄i and σ̂2 =
1

nk

n∑
i=1

k∑
j=1

(Xij − X̄i)
2.
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It is the MLE of σ2 that is inconsistent. Indeed,

σ̂2 =
1

nk

n∑
i=1

k∑
j=1

(Xij − X̄i)
2 =

1

n

1

k

n∑
i=1

(
k∑

j=1

(Xij − X̄i)
2

)
=

1

n

1

k

n∑
i=1

σ2Wi

where the Wi are independent χ2
k−1. By the WLLN,

σ2

k

1

n

n∑
i=1

Wi
P−→ σ2

k
(k − 1)

Hence, the MLE for σ2 does not converge to σ2! It is the bias that is making the

estimate inconsistent; if we kill the bias by multiplying by k
k−1

the new estimator is

consistent, i.e., if we “adjust” the MLE and use

1

n(k − 1)

n∑
i=1

k∑
j=1

(Xij − X̄i)
2

then we return to consistency. In these sorts of problems, where the number of

observations and the number of free parameters grow at the same rate, maximum

likelihood often runs into problems. However, these problems are hard for any school

of thought.

16.3 MLEs in Exponential Family

It is part of the statistical folklore that MLEs cannot be beaten asymptotically. One

needs to be careful in making such a statement. Under various conditions, MLEs

are indeed asymptotically optimal and asymptotically normal. But it is important

to remember that the conditions needed are NOT just on the probability model;

there must be conditions imposed on the competing estimates also for optimality.

There are other potential problems. MLEs may not exist for all samples. In such

cases, one can only talk about asymptotic behavior and optimality of estimates that

are quasi-MLEs. Careful exposition of the technical issues and proofs may be seen in

Perlman(1983), Bickel and Doksum (2001), Lehmann and Casella (1998) and Brown

(1986). Computing the MLE can also be a difficult numerical exercise in general;

the EM algorithm is a popular tool for this. See McLachlan and Krishnan (1997).

We start with a familiar model, namely exponential families; things are relatively

uncomplicated in this case. For the sake of completeness, we state the definition

and a few basic facts about the Exponential family.
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Definition 16.1. Let f(x|θ) = eθT (x)−ψ(θ)h(x)dµ(x), where µ is a positive σ-finite

measure on the Real line, and θ ∈ Θ = {θ :
∫

eθT (x)h(x)dµ(x) < ∞}. Then, f is said

to belong to the one parameter Exponential family with natural parameter space Θ.

The parameter θ is called the natural parameter of f .

The following are some standard facts about a density in the one parameter

Exponential family.

Proposition (a) For θ ∈ Θ0, the interior of Θ, all moments of T (X) exist,

and ψ(θ) is infinitely differntiable at any such θ. Furthermore, Eθ(T ) = ψ′(θ), and

varθ(T ) = ψ′′(θ);

(b) Given an iid sample of size n from f,
∑n

i=1 T (Xi) is minimal sufficient;

(c) The Fisher information function exists, is finite at all θ ∈ Θ0, and equals

I(θ) = ψ′′(θ);

(d) The following families of distributions belong to the one parameter Expo-

nential family:

N(µ, 1), N(0, σ2), Ber(p), Bin(n, p), n fixed,

Poi(µ), Geo(p), Exp(λ), Gamma(α, λ), α fixed, Gamma(α, λ), λfixed.

Theorem 16.1. Let X1, X2, . . . , Xn
iid∼ f(x|θ) = eθT (x)−ψ(θ)h(x)dµ(x). Let the true

θ = θ0 ∈ Θo, i.e., the interior of the natural parameter space. Assume ψ′′(θ) >

0 ∀θ ∈ Θo. Then for all large n, w.p. 1, a unique MLE of θ exists, is consistent,

and is asymptotically normal.

Proof: The likelihood function is

l(θ) = eθΣT (xi)−nψ(θ)

⇒ L(θ) = logl(θ) = n[θT̄ − ψ(θ)].

Therefore, the likelihood equation is

L′(θ) = n[T − ψ′(θ)] = 0 ⇔ T − Eθ(T (X1)) = 0.

Now T (X1) has a finite mean, and hence, by the SLLN,

T
a.s−→ Eθ0T (X1) = ψ′(θ0).

Hence, for all large n, w.p. 1, T is in the interior of the range of the function

θ → ψ(θ). On the other hand, Eθ(T (X)) = ψ′(θ) is a strictly monotone increasing
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function of θ because ψ′′(θ) = V arθ(T (X)) > 0. Therefore, for all large n, w.p.

1, there exists a unique θ such that EθT (X) = T . This is the MLE of θ and is

characterized as the unique root of ψ′(θ) = T ⇔ θ̂ = (ψ′)−1(T ).

By the Continuous mapping theorem, θ̂
a.s.−→
Pθ0

θ0. By the Central Limit Theorem, T is

asymptotically normal. By the Delta Theorem, a smooth function of an asymptoti-

cally normal sequence is also asymptotically normal. Indeed, since
√

n(T̄−ψ′(θ0))
L⇒

N(0, ψ′′(θ0)), and since θ̂ = (ψ′)−1(T ), a direct application of the the Delta theorem

implies that

√
n(θ̂ − θ0)

L−→
Pθ0

N(0, I−1(θ0))

where I(θ0) = ψ′′(θ0).

Remark: So this is a success story for the MLE: strong consistency and asymp-

totic normality hold. Nevertheless, even in this successful case, it is not true that

this estimate gives the uniformly best limit distribution. It is possible to find a

competing estimate,
ˆ̂
θ, that converges to some other limit distribution, which has a

smaller variance for some particular θ. We will discuss these important subtleties in

a later section.

16.4 More General Cases and Asymptotic Normality

In general, we may have problems with the existence of the MLE, even for large

samples. What can we get in such cases? We will need a laundry list of assumptions.

If we are satisfied with something that is merely consistent, the list is shorter. If we

want something that is also asymptotically normal, then the list of assumptions gets

longer. This list has come to be known as the Cramér-Rao conditions; see Lehmann

and Casella (1998) and Lehmann (1999) for a proof of the next theorem.

Theorem 16.2. Cramér-Rao conditions Assume X1, X2, . . . , Xn
iid∼ Pθ and dPθ

dµ
=

f(x|θ) for some σ-finite µ (e.g., Lebesgue measure in the continuous case or counting

measure in the discrete case).

Assume the conditions:

(A1) Identifiability, i.e., Pθ1 = Pθ2 ⇔ θ1 = θ2.

(A2) θ ∈ Θ = an open interval in the Real line.

(A3) S = {x : f(x|θ) > 0} is free of θ .
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(A4) ∀x ∈ S, d
dθ

f(x|θ) exists, i.e., the likelihood function is smooth as a function of

the parameter.

Let θ0 ∈ Θ0 be the true value of θ. Then there exists a sequence of functions

θ̂n = θ̂n(X1, . . . , Xn) such that

(i) θ̂n is a root of the likelihood equation L′(θ) = 0 for all large n,

where L(θ) is log l(θ) = Σ log f(xi|θ).

(ii) Pθ0(the root θ̂n is a local maximum of l(θ)) −→ 1 as n −→ ∞

(iii)θ̂n

Pθ0−→ θ0 .

Remark: This theorem does not say which sequence of roots of L′(θ) = 0 should

be chosen to ensure consistency in the case of multiple roots. It does not even guar-

entee that for any given n, however large, the likelihood function l(θ) has any local

maxima at all. This specific theorem is useful in ONLY those cases where L′(θ) = 0

has a UNIQUE root for all n.

Since consistency is regarded as a weak positive property, and since in statistics

one usually wants to make actual inferences such as confidence interval construction,

it is important to have weak convergence results, in addition to consistency. As we

remarked earlier, establishing weak convergence results requires more conditions.

The issues and the results in the multiparameter case are analogous to those

in the one parameter case. As in the one parameter case, in general one can only

assert consistency and asymptotic normality of suitable sequences of roots of the

likelihood equation. We state here the asymptotic normality result directly for the

multiparameter case, from which the one parameter case follows as a special case.

For a complete list of the regularity conditions needed to prove the following theorem,

and also for a proof, see Lehmann and Casella (1998). We refer to the list of all

assumptions as multiparameter Cramér-Rao conditions for asymptotic normality.

A problem in which these conditions are all satisfied is usually called a regular

parametric problem.

Theorem 16.3. Under the multiparameter case Cramér-Rao conditions for asymp-

totic normality, there exists a sequence of roots of the likelihood equation which is

consistent and which satisfies
√

n(θ̂n−θ0)
L−→ N(0, I−1(θ0)), where I(θ) = ((Iij(θ)))

with Iij(θ) = −Eθ

[
∂2

∂θi∂θj
log f(X|θ)

]
, is the Fisher information matrix.
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Remark: As an example of what the conditions are, one of the conditions for the

above theorem is that ∂3

∂θi∂θj∂θk
log f(x|θ) exists for all x in S = {x : f(x|θ) > 0} and

∂3

∂θi∂θj∂θk

∫
S

log f(x|θ)dx =

∫
S

{
∂3

∂θi∂θj∂θk

log f(x|θ)
}

dx

Remark: The theorem applies to any distribution in the Exponential family for

which ψ′′(θ) is positive and finite for every θ in the interior of the natural parameter

space. There are also multiparameter Exponential families, very similar to the one

parameter version, for which the theorem holds, but we will not treat them here.

16.5 Observed and Expected Fisher Information

Consider the regular one parameter problem with iid observations from a den-

sity f(x|θ) wrt some dominating measure µ. According to the previous theorem,

the ”MLE” θ̂n is asymptotically normal with mean θ and variance 1
nI(θ)

, where

I(θ) = −Eθ(
∂2

∂θ2 log f(X|θ)).Since the observations Xi are iid, by Kolmogorov’s

SLLN, the average 1
n

∑n
i=1 − ∂2

∂θ2 log f(Xi|θ) a.s.⇒ I(θ). Thus, as a matter of providing

an estimate of the variance of the MLE, it is very reasonable to provide the estimate
1∑n

i=1 − ∂2

∂θ2 log f(Xi|θ)|θ=θ̂

, where θ̂ is the MLE of θ. The quantity 1
n

∑n
i=1 − ∂2

∂θ2 log f(Xi|θ)
is called the Observed Fisher Information. Its expectation, which is just the Fisher

information function I(θ) is called the Expected Fisher Information. It is natural

to ask which gives a better estimate of the true variance of the MLE : 1

nI(θ̂)
, or

1∑n
i=1 − ∂2

∂θ2 log f(Xi|θ)|θ=θ̂

?

We present two examples to help understand this question.

Example 16.9. Suppose X1, . . . , Xn are iid from a distribution in the one parame-

ter Exponential family with density f(x|θ) = eθT (x)−ψ(θ)h(x)(dµ). Then, ∂2

∂θ2 log f(x|θ) =

−ψ′′(θ). Thus, I(θ) and 1
n

∑n
i=1 − ∂2

∂θ2 log f(Xi|θ) are both equal to ψ′′(θ), and so use

of the observed or the expected Fisher information lead to the same estimate for the

variance of θ̂n.

Example 16.10. Suppose X1, . . . , Xn are iid from the Cauchy distribution C(θ, 1).

Then, f(x|θ) = 1
π(1+(x−θ)2)

, and ∂2

∂θ2 log f(x|θ) = 2((x−θ)2−1)
(1+(x−θ)2)2

. On doing the necessary

integration, I(θ) = 1
2
. Thus the estimate of the variance of the MLE based on

the expected information is 2
n
. However, it is clear that the observed information

method would produce an estimated variance that depends on the actual observed
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data. Over repeated sampling, it will have, typically, an asymptotically normal

distribution itself, but its performance as an estimate of the true variance relative

to the constant estimate 2
n

can be accurately understood only by careful simulation.

Some interesting facts are revealed by a simulation. For n = 20, and the true

θ value equal to 0, a simulation of size 500 was conducted to enquire into the

performance of the variance estimates discussed above. The estimate based on

the expected Fisher information is 2
n

= .1. The true variance of the MLE when

n = 20 is .1225 according to the simulation. Thus the expected Fisher information

method produces an underestimate of the variance by about 16%. The variance

estimate produced by the observed information method gives an average estimate

of .1071 over the 500 simulations. Thus, the bias is significantly lower. However,

the variability in the variance estimate over the simulations is high. While the

smallest variance estimate produced by the observed information method is .0443,

the largest one is .9014. The heaviness of the Cauchy tail impacts the variance of

the variance estimate as well. The estimate produced by the observed information

method has a smaller bias than the one based on expected information, but can go

wild from time to time, and is perhaps risky. The expected information estimate,

on the other hand, is just a constant estimate 2
n
, and is not prone to fluctuations

caused by a whimsical Cauchy sample. This example illustrates the care needed in

assessing the accuracy of maximum likelihood estimates; the problem is harder than

it is commonly believed to be.

16.6 Edgeworth Expansions for MLEs

The central limit theorem gives a first order approximation to the distribution of the

MLE under regularity conditions. More accurate approximations can be obtained

by Edgeworth expansions of higher order. In the Exponential family, where the

MLE is a linear statistic, the expansion is a bit easier to state. For more general

regular densities, the assumptions are complex and many, and the expansion itself

is notationally more messy. References for these expansions are Pfanzagl ( 1973),

Bhattacharya and Ghosh(1978), and Bai and Rao(1991). We present the expansions

in two cases below, namely, the case of the Exponential family, and a more general

regular case. Of these, in the Exponential family, the MLE of the mean function

is the sample mean itself, and so an Edgeworth expansion follows from general

expansions for sample means, as in Chapter 13; a specific reference for the next

theorem is Pfanzagl(1973).
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Theorem 16.4. Let X1, X2, . . . , Xn
iid∼ fθ(x) = eθx−ψ(θ)h(x)dx. Consider estima-

tion of Eθ(X) = ψ(θ) and let Fn(x) = Pθ(
√

n(X̄−ψ′(θ))√
ψ′′(θ)

≤ x). Then,

Fn(x) = Φ(x) +
p1(x, θ)φ(x)√

n
+

p2(x, θ)φ(x)

n
+ O(n−3/2),

uniformly in x, where,

p1(x, θ) = c1(1 − x2), p2(x, θ) = c2(3x − x3) +
c2
1

72
(10x3 − 15x − x5),

with c1 = ψ(3)(θ)

6(ψ′′(θ))3/2 , c2 = ψ(4)(θ)
24(ψ′′(θ))2 .

Example 16.11. Suppose X1, X2, . . . , Xn
iid∼ fθ(x) = θeθx, x < 0, θ > 0. Then,

ψ(θ) = − log θ, c1 = −1
3
, c2 = 1

4
. Thus, the MLE X̄ of Eθ(X) = −1

θ
satisfies the

expansion

Pθ(
√

n(X̄ +
1

θ
) ≤ x

θ
) = Φ(x)− (1 − x2)φ(x)

3
√

n
+

(3x−x3

4
+ 10x3−15x−x5

648
)φ(x)

n
+O(n−3/2),

uniformly in x. For ease of reference, we will denote the two term expansion by

H(n, x). As a test of the expansion’s numerical accuracy, suppose the true θ = 1

and we want to approximate P ((
√

n(X̄ + 1
θ
) ≤ x

θ
) . Since −∑n

i=1 Xi is Gamma with

shape parameter n and scale parameter 1, on computation, one finds the following

exact values and approximations obtained from the above two term expansion; we

use n = 30.

x = .5; exact = .675; H(n, x) = .679;

x = 2.0; exact = .988; H(n, x) = .986;

x = 3.0; exact = 1.000; H(n, x) = 1.0001.

Thus, the expansion is quite accurate at the sample size of n = 30. This example

brings out an undesirable feature of Edgeworth expansions that they are not CDFs

and can take values < 0 or > 1, as it does here when x = 3.0.

A general Edgeworth expansion for the MLE under a variety of regularity con-

ditions is given in Pfanzagl(1973). The conditions are too many to state them here.

However, the expansion is explicit. We give the expansion below. Pfanzagl(1973)

gives examples of families of densities that satisfy the conditions required for the

validity of his theorem. We first need some more notation.
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For a given density fθ(x), let

lθ = log fθ(x), l̇θ =
∂

∂θ
lθ, l̈θ =

∂2

∂θ2
lθ, l

(3)
θ =

∂3

∂θ3
lθ,

ρ20 = Eθ[l̇θ]
2, ρ11 = −Eθ[l̈θ], ρ30 = −Eθ[l̇θ]

3, ρ12 = −Eθ[l
(3)
θ ], ρ21 = 2Eθ[l̇θ l̈θ].

With this notation, we have the following expansion for the CDF of the MLE;

for notational simplicity, we present only the one term expansion in the general case.

Theorem 16.5. Let X1, X2, . . . , Xn
iid∼ fθ(x). Under the regularity conditions on

fθ as in Pfanzagl(1973), the MLE θ̂n of θ satisfies Fn(x, θ) = Pθ(
√

n(θ̂n−θ)
β

≤ x) =

Φ(x)+ q1(x,θ)φ(x)√
n

+o( 1√
n
), uniformly in x and uniformly in compact neighborhoods of

the given θ, where q1(x, θ) = a10 + a11x
2, with a10 = − ρ30

6ρ
3/2
20

, a11 = −a10 +
ρ12

√
ρ20

2ρ2
11

−
ρ21

2
√

ρ20ρ11
, β =

√
ρ20

ρ11
.

Example 16.12. Consider maximum likelihood estimation of the location parame-

ter of a Cauchy distribution. The regularity conditions needed for an application of

Theorem 16.5 are met; see Pfanzagl(1973). We have fθ(x) = 1
π(1+(x−θ)2)

. Because of

the fact that the density is symmetric, the coefficients ρ12, ρ21, ρ30 (i.e., those whose

subscripts add to an odd integer) are all zero. Therefore, a10 = a11 = 0, and so it

follows that Fn(x, θ) = Φ(x) + o( 1√
n
), uniformly in x, i.e., the CLT approximation

is second order accurate; this is interesting, and is a consequence of the symmetry.

16.7 Asymptotic Optimality of the MLE and Superefficiency

It was first believed as a folklore that the MLE under regularity conditions on the

underlying distribution is asymptotically the best for every value of θ, i.e. if a MLE

θ̂n exists and ,
√

n(θ̂n − θ)
L−→
Pθ

N(0, I−1(θ)), and if another competing sequence Tn

satisfies
√

n(Tn − θ)
L−→
Pθ

N(0, V (θ)), then for every θ, V (θ) ≥ 1
I(θ)

. It was a major

shock when in 1952 Hodges gave an example that destroys this belief and proved it

to be false even in the normal case. Hodges (1952) produced an estimate Tn that

beats the MLE X locally at some θ, say, θ = 0. The example can be easily refined

to produce estimates Tn that beat X at any given finite set of values of θ. Later, in

a very insightful result, LeCam(LeCam(1953)) showed that this can happen only on

Lebesgue-null sets of θ. If, in addition, we insist on using only such estimates Tn that

have a certain smoothness property (to be made precise later), then the inequality

V (θ) < 1
I(θ)

cannot materialize at all. So to justify the folklore that MLEs are
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asymptotically the best, one not only needs regularity conditions on f(x|θ), but

one also must restrict attention to only those estimates that are adequately nice

(and Hodges’ estimate is not). An excellent reference for this topic is van der Vaart

(1998).

Example 16.13. Let X1, X2, . . . , Xn
iid∼ N(θ, 1). Define an estimate Tn as

Tn =

{
X̄ if

∣∣X̄∣∣ > n− 1
4

aX̄ if
∣∣X̄∣∣ ≤ n− 1

4

where 0 ≤ a < 1.

To derive the limiting distribution of Tn, notice that

Pθ(
√

n |Tn − θ| ≤ c)

= Pθ(
√

n |Tn − θ| ≤ c,
∣∣X∣∣ ≤ n− 1

4 ) + Pθ(
√

n |Tn − θ| ≤ c,
∣∣X∣∣ > n− 1

4 ).

If θ = 0 then the second term goes to zero and so the limit distribution is determined

from the first term. For θ 6= 0, the situation reverses. It follows that
√

n(Tn −
θ)

L−→
Pθ

N(0, 1), if θ 6= 0 and
L−→
Pθ

N(0, a2), if θ = 0. Thus if we denote by V (θ) the

asymptotic variance of Tn, then V (θ) = 1
I(θ)

, for θ 6= 0, V (θ) = a2

I(θ)
, for θ = 0.

Therefore, V (θ) ≤ 1
I(θ)

for every θ and V (θ) < 1
I(θ)

at θ = 0.

Remark: The Hodges estimate Tn is what we call a shrinkage estimate these days.

Because V (θ) ≤ 1
I(θ)

∀θ and V (θ) < 1
I(θ)

at θ = 0, the asymptotic relative efficiency

(ARE) of Tn with respect to X is ≥ 1,∀θ and > 1 when θ = 0. Such estimates,

which have a smaller asymptotic variance than the MLE locally at some θ, and never

a larger asymptotic variance at any θ, are called superefficient.

It is clear however that Tn has certain undesirable features. First, as a function of

X1, ..., Xn, Tn is not smooth. Second V (θ) is not continuous in θ. However , what

transpires is that something is wrong with Tn very seriously. The mean squared

error of Tn behaves erratically. For given n, as a function of θ, nEθ(Tn − θ)2 sharply

leaps over nE(X − θ)2 = 1 for values of θ ≈ 0. The values of θ at which this occurs

change with n. At any given θ, the leaps vanish for large n. But for any n, the

leaps reoccur at other values of θ close to 0. Thus the superefficiency of Tn is being

purchased at the cost of a sharp spike in the mean squared error at values of θ very

very close to 0. DasGupta (2004) shows that

lim inf
n→∞

sup
|θ|≤n− 1

4

√
nEθ(Tn − θ)2 ≥ 1

2
.
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Notice the
√

n norming in the result, as opposed to the norming by n for the equal-

izer minimax estimate X̄.

16.8 Háek-Le Cam Convolution Theorem

The superefficiency phenomenon, it turns out, can only happen on Lebesgue-null

subsets of Θ. It cannot happen at all if furthermore attention is restricted to esti-

mators that are distributionally smooth in the following sense.

Definition 16.2. Let Tn be an estimate sequence for a vector function ψ(θ) such

that
√

n(Tn −ψ(θ))
L−→
Pθ

µθ; Tn is called a regular estimating sequence if for all finite

h,
√

n(Tn − ψ(θ +
h√
n

))
L−→

P
θ+ h√

n

µθ.

Remark: Thus, for a regular estimating sequence Tn, changing the parameter ever

so slightly would not change the limit distribution at all. Among such estimates we

cannot find one that is superefficient.

Theorem 16.6. Suppose X1, X2, . . . , Xn
iid∼ Pθ ¿ µ, θ ∈ Θ. Suppose f(x|θ) =

dPθ

dµ
(x) > 0 for every x, θ, and Oθf(x|θ) exists for every x, θ. Suppose also that

0 < Iij(θ) = Eθ

[
− ∂2

∂θi∂θj

log f(X|θ)
]

< ∞

for every θ, is continuous at every θ and I−1(θ) exists for every θ. Let ψ(θ) be

any differentiable function of θ with gradient vector Oψ(θ). Let Tn be any regular

estimate sequence of ψ(θ) with
√

n(Tn − ψ(θ))
L−→
Pθ

µθ. Then there exists a (unique)

probability distribution νθ such that µθ admits the convolution representation µθ =

N(0, (Oψ)I−1(θ)(Oψ)′) ∗ νθ. In particular, if µθ has a covariance matrix, say
∑

θ,

then
∑

θ ≥ (Oψ)I−1(θ)(Oψ)′ in the sense
∑

θ −(Oψ)I−1(θ)(Oψ)′ is n.n.d. at every

θ.

In the absence of the regularity of the estimate sequence Tn, we can assert something

a bit weaker.

Theorem 16.7. Assume the conditions in the previous theorem on Pθ ,I(θ), and

ψ(θ). Suppose
√

n(Tn − ψ(θ))
L−→
Pθ

µθ. Then for almost all θ (Lebesgue), µθ admits
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the convolution representation µθ = N(0, (Oψ)I−1(θ)(Oψ)′) ∗ νθ.

Remark: These theorems are collectively known as the Háek-Le Cam convolution

theorem. See van der Vaart (1998) for greater details and proofs. The second theo-

rem says that even without regularity of the competing estimates Tn, superefficiency

can occur only on sets of θ of Lebesgue measure 0. This result of Lucien Le Cam is

regarded as one of the most insightful results in theoretical statistics.

We give an example of a nonregular estimate for illustration.

Example 16.14. Let X1, X2, . . . , Xn
iid∼ Np(θ, I). The MLE of θ is X. In 1961,

James and Stein showed that Tn = (1 − p−2

n‖X‖2 )X has a smaller mean squared error

than X at every θ, provided p ≥ 3, i.e. Eθ‖Tn − θ‖2 < Eθ‖X − θ‖2 = p
n
,∀θ.

The James-Stein estimate Tn has the property that E h√
n
‖Tn − h√

n
‖2 < E h√

n
‖X −

h√
n
‖2,∀h. It follows that the limit distribution of

√
n(X− h√

n
) does not have a smaller

covariance matrix than that of
√

n(Tn − h√
n
). The James-Stein estimate does not

have the property of regularity. And it is exactly at θ = 0 that the estimate Tn

is nonregular; i.e.
√

n(Tn − h√
n
)

L−→
P h√

n

µh for some distribution µh that really does

depend on h. In fact one can describe µh. It is the same as the distribution of

(1 − p−2
‖Z‖2 )Z − h, where Z ∼ Np(0, I).

16.9 Loss of Information and Efron’s Curvature

In Exponential families, the maximum likelihood estimate based on n iid observa-

tions is itself a sufficient statistic. Since we think of sufficient statistics as capturing

all the information about the parameter present in the sample, it would mean that

the loss of information caused by summarizing the full data into the MLE is zero

in Exponential families. How does one formalize this question for nonexponential

families and give a quantification of the loss of information suffered by the MLE

and relate it to something of actual statistical relevance ? Efforts to show that the

maximum likelihood estimate leads to the least amount of information lost by a

one dimensional summary started with the seminal second order efficiency theory

of Rao(1961,1962,1963). More recently, Efron(1975) gave a theory of curvature of

parametric families which attempts to connect the information loss question with

how nonexponential a family is. The idea is that the more curved a parametric

family is, the greater is the information loss suffered by the MLE. We present a few

results in this direction below.
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Definition 16.3. Let Pθ << µ be a family of dominated measures with correspond-

ing densities fθ(x) in an Euclidean space. Assuming all the required derivatives and

the expectations exist, let

lθ(x) = log fθ(x), ν11(θ) = Eθ[
∂

∂θ
lθ

∂2

∂θ2
lθ], ν02(θ) = Eθ[

∂2

∂θ2
lθ]

2 − I2(θ),

where I(θ) denotes the Fisher information at θ. The curvature of {Pθ} at θ is defined

as

γθ =

√
ν02(θ)

I2(θ)
− ν2

11(θ)

I3(θ)

.

Remark: A detailed geometric justification for the name curvature is given

in Efron(1975). The curvature γθ defined above works out to zero in the regular

Exponential family, which acts like a straight line in the space of all probability

distributions on the given Euclidean space. Nonexponential families have nonzero

(at some values of θ ) γθ and act like curves in the space of all probability distribu-

tions. Hence the name curvature. Before explaining a theoretical significance of γθ

in terms of information loss suffered by the MLE, let us see a few examples.

Example 16.15. Suppose fθ(x) is a member of the Exponential family with fθ(x) =

eθT (x)−ψ(θ)h(x)(dµ). Then, lθ(x) = θT (x)−ψ(θ)+log h(x), and hence, ∂
∂θ

lθ = T (x)−
ψ′(θ), ∂2

∂θ2 lθ = −ψ′′(θ). Therefore, the Fisher information function I(θ) = ψ′′(θ). On

the other hand, ν02(θ) = Eθ[
∂2

∂θ2 lθ]
2 − I2(θ) = 0, and also, ν11(θ) = Eθ[

∂
∂θ

lθ
∂2

∂θ2 lθ] =

−ψ′′(θ)Eθ[T (X)−ψ′(θ)] = 0, as Eθ[T (X)] = ψ′(θ). It follows from the definition of

the curvature that γθ = 0.

Example 16.16. Consider a general location parameter density fθ(x) = g(x −
θ), with support of g as the entire real line. Then, writing log g(x) = h(x), lθ =

h(x − θ), and by direct algebra, I(θ) =
∫

g′2

g
, ν02(θ) =

∫
gh′′2 − (

∫
g′2

g
)2, ν11(θ) =

− ∫
h′h′′g. All these integrals are on (−∞,∞), and the expressions are independent

of θ. Consequently, the curvature γθ is also independent of θ.

For instance, if fθ(x) is the density of the central t distribution with location

parameter θ and m degrees of freedom, then, on the requisite integrations, the

different quantities are :

I(θ) =
m + 1

m + 3
, ν02(θ) =

m + 1

m + 3
[
(m + 2)(m2 + 8m + 19)

m(m + 5)(m + 7)
− m + 1

m + 3
], ν11(θ) = 0.
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On plugging into the definition of γθ, one finds that γ2
θ = 6(3m2+18m+19)

m(m+1)(m+5)(m+7)
; see

Efron(1975). As m → ∞, γθ → 0, which one would expect, since the t distribution

converges to the Normal when m → ∞, and the normal has zero curvature by the

previous example. For the Cauchy case corresponding to m = 1, γ2
θ works out to 2.5.

The curvature across the whole family as m varies between 1 and ∞ is a bounded

decreasing function of m. The curvature becomes unbounded when m → 0.

We now present an elegant result connecting curvature to the loss of information

suffered by the MLE when fθ satisfies certain structural and regularity assumptions.

The density fθ is assumed to belong to the Curved Exponential Family, as defined

below.

Definition 16.4. Suppose for θ ∈ Θ ⊆ R, fθ(x) = eη′T (x)−ψ(η)h(x)(dµ), where

η = η(θ) for some specified function from Θ to an Euclidean space Rk. Then fθ is

said to belong to the Curved Exponential Family with carrier µ.

Remark: If η varies in the entire set {η :
∫

eη′T (x)h(x)dµ < ∞}, then the family

would be a member of the Exponential family. By making the natural parameter η

a function of a common underlying parameter θ, the Exponential family density has

been restricted to a subset of lower dimension. In the curved Exponential family,

the different components of the natural parameter vector of an Exponential family

density are tied together by a common underlying parameter θ.

Example 16.17. Consider the N(θ, θ2) density, with θ 6= 0. These form a subset

of the two parameter N(µ, σ2) densities, with µ(θ) = θ and σ2(θ) = θ2. Writing

out the N(θ, θ2) density, it is seen to be a member of the curved Exponential family

with T (x) = (x2, x) and η(θ) = (− 1
2θ2 ,

1
θ
).

Example 16.18. Consider Gamma densities for which the mean is known to be 1.

They have densities of the form fθ(x) = e−x/θx1/θ−1

θ1/θΓ( 1
θ
)

. This is a member of the curved

Exponential family with T (x) = (x, log x) and η(θ) = (−1
θ
, 1

θ
). Here is the principal

theorem on information loss by the MLE in curved Exponential families.

Theorem 16.8. Suppose fθ(x) is a member of the curved Exponential family and

suppose the characteristic function ψθ(t) of fθ is in Lp for some p ≥ 1. Let θ̂n denote

the MLE of θ based on n iid observations from fθ, I(θ) = the Fisher information

based on fθ, and In,0(θ) the Fisher information obtained from the exact sampling

distribution of θ̂n under θ. Then, limn→∞(nI(θ) − In,0(θ)) = I(θ)γ2
θ . In particular,

the limiting loss of information suffered by the MLE is finite at any θ at which the

curvature γθ is finite.
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Remark: This is the principal theorem in Efron (1975). Efron’s interpretation

of this result is that the information obtained from n samples if one uses the MLE

would equal the information obtained from n−γ2
θ samples if the full sample is used.

The interpretation hinges on use of Fisher information as the criterion. However, γθ

has other statistical significances, e.g., in testing of hypothesis problems. In spite

of the controversy about whether γθ has genuine inferential relevance, it seems to

give qualitative insight into the wisdom of using methods based on the maximum

likelihood estimate, when the minimal sufficient statistic is multidimensional.
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16.10 Exercises

Exercise 16.1. * For each of the following cases, write or characterize the MLE

and describe its asymptotic distribution and consistency properties:

(a) X1, . . . , Xn are iid with density

f(x|σ1, σ2) =

{
ce

− x
σ1 , x > 0

ce
x

σ2 , x < 0
,

each of σ1, σ2 being unknown parameters;

REMARK: This is a standard way to produce a skewed density on the whole

real line.

(b) Xi, 1 ≤ i ≤ n are independent Poi(λxi), the xi being fixed covariates;

(c) X1, X2, · · · , Xm are iid N(µ, σ2
1) and Y1, Y2, · · · , Yn are iid N(µ, σ2

2), and all

m + n observations are independent;

(d) m classes are represented in a sample of n individuals from a multinomial

distribution with an unknown number of cells θ, and equal cell probabilities
1
θ
.

Exercise 16.2. Suppose X1, . . . , Xn are p - vectors uniformly distributed in the

ball Br = {x : ||x||2 ≤ r}; r > 0 is an unknown parameter. Find the MLE of r and

its asymptotic distribution.

Exercise 16.3. * Two independent proof readers A and B are asked to read a

manuscript containing N errors; N ≥ 0 is unknown. n1 errors are found by A alone,

n2 by B alone, and n12 by both. What is the MLE of N? What kind of asymptotics

are meaningful here?

Exercise 16.4. * (Due to C. R. Rao) In an archaeological expedition, investigators

are digging up human skulls in a particular region. They want to ascertain the sex

of the individual from the skull and confirm that there is no demographic imbalance.

However, determination of sex from an examination of the skull is inherently not an

error free process.

Suppose they have data on n skulls, and for each one, they have classified the

individual as being a male or female. Model the problem, and write the likelihood

function for the following types of modelling:
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(a) The error percentages in identifying the sex from the skull are assumed

known;

(b) The error percentages in identifying the sex from the skull are considered

unknown, but are assumed to be parameters independent of the basic parameter p,

namely, the proportion of males in the presumed population;

(c) The error percentages in identifying the sex from the skull are considered

unknown, and they are thought to be functions of the basic parameter p. The

choice of the functions is also a part of the model.

Investigate, under each type of modelling, existence of the MLE of p, and write

a formula, if possible under the particular model.

Exercise 16.5. * (Missing data) The number of fires reported in a week to a city

fire station is Poisson with some mean λ. The city station is supposed to report the

number each week to the central state office. But they do not bother to report it if

their number of reports is less than 3.

Suppose you are employed at the state central office and want to estimate λ.

Model the problem, and write the likelihood function for the following types of

modelling:

(a) You ignore the weeks on which you did not get a report from the city office;

(b) You do not ignore the weeks on which you did not get a report from the

city office, and you know that the city office does not send its report only when the

number of incidents is less than 3;

(c) You do not ignore the weeks on which you did not get a report from the city

office, and you do not know that the city office does not send its report only when

the number of incidents is less than 3.

Investigate, under each type of modelling, existence of the MLE of λ, and write

a formula, if possible under the particular model.

Exercise 16.6. * Find a location-scale parameter density 1
σ
f(x−µ

σ
) for which the

MLE of σ is 1
n

∑ |Xi−M |, where M is the median of the sample values X1, . . . , Xn.

Find the asymptotic distribution of the MLE under this f (challenging!).

Exercise 16.7. * Consider the polynomial regression model yi = β0+
m∑

j=1

βjx
j
i +σei,

where ei are iid N(0, 1). What is the MLE of m?

Exercise 16.8. * Suppose X1, . . . , Xm+n are independent, with X1, . . . , Xm ∼
N(µ1, σ

2), Xm+1, . . . , Xm+n ∼ N(µ2, σ
2), where µ1 ≤ µ2 and σ2 are unknown. Find

the MLE of (µ1, µ2) and derive its asymptotic distribution when µ1 < µ2, µ1 = µ2.
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Exercise 16.9. If X1, . . . , Xn are iid Poi(λ), show that 1
X̄+ 1

n

is second order un-

biased for 1
λ
.

Exercise 16.10. * Find the limiting distribution of the MLE of (µ, σ, α) for the

three-parameter gamma density

e−
(x−µ)

σ (x − µ)α−1

σαΓ(α)
, x ≥ µ, α, σ > 0, −∞ < µ < ∞.

Exercise 16.11. Suppose X1, . . . , Xn are iid Exp(λ). Find the MLE of the ex-

pected residual life E(X1 − t|X1 > t) and its asymptotic distribution.

Exercise 16.12. * Suppose X1, . . . , Xn are BV N(µ1, µ2, σ1, σ2, ρ), all five param-

eters being unknown. Find the MLE of P (X11 > µ1, X12 > µ2), where
(

X11

X12

)
= X1

and find its asymptotic distribution .

Exercise 16.13. * Derive a closed form expression for the mean squared error

R(θ, Tn) of the Hodges superefficient estimate and show that lim sup
|θ|≤n− 1

4

nR(θ, Tn) = ∞.

Exercise 16.14. * Suppose X1, . . . , Xn are iid with density

p
1√
2π

e−
(x−µ)2

2 + (1 − p)
1√
2πσ

e−
1

2σ2 (x−µ)2 ,

where 0 < p < 1 is known. Show that MLEs for µ, σ do not exist. How would you

estimate µ, σ? What is the asymptotic distribution of your estimates?

Exercise 16.15. * Suppose Xi are iid N(µ, 1) where µ is known to be a positive

integer. Let g : R → R be the function

g(x) =

{
x if x is a prime

−x if x is not a prime

(a) Is X̄ consistent for µ?

(b) Is g(X̄) consistent for g(µ)?

Exercise 16.16. Suppose Xi
indep.∼ Poi(λi) (thus Xi are not iid), 1 ≤ i ≤ n,

(a) What is the MLE of λ?

(b) What is the asymptotic distribution of the MLE of λ?

Exercise 16.17. *
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(a) Suppose Xi are iid N(µ, 1), but the collector rounds the Xi to Yi, the nearest

integer. Is Ȳ consistent for µ?

(b) Find a consistent estimate for µ based on the Yi.

Exercise 16.18. * Suppose Xi are iid nonnegative random variables and Xi are

recorded as the integer closest to the Xi, say Yi. Give a necessary and sufficient

condition for Ȳ
P−→ E(X1).

Exercise 16.19. Suppose Xi
iid∼ Poi(λ), where λ > 0 is known to be an integer.

(a) Find the MLE λ̂ of λ.

(b) * What is lim
n→∞

V ar(λ̂)?

Exercise 16.20. * Show that for iid C(θ, 1) data, the statistic 1∑n
i=1

∂2

∂θ2 log fθ(Xi)
is

asymptotically normal. Find the appropriate centering, norming, and the variance

of the asymptotic normal distribution.

Exercise 16.21. Compute the curvature of the N(θ, θ4) family.

Exercise 16.22. Compute the curvature of the family of Gamma densities with a

known mean c.

Exercise 16.23. * For estimation of a Poisson mean λ, find the limiting information

lost by s2, the sample variance, compared to the information in the full sample. Is

it finite ? Is it bounded ?

Exercise 16.24. Simulate the exact variance of the MLE of a double Exponential

mean based on 20 iid samples, and compare the estimates based on expected and

observed Fisher information with this exact value. Comment on the bias and the

variability of these two estimates.

Exercise 16.25. * Is the central limit theorem for the MLE of a Logistic mean

second order accurate ?

Exercise 16.26. * Derive a two term Edgeworth expansion for the MLE of the

shape parameter of a Gamma distribution assuming the scale parameter is 1.

Exercise 16.27. * Derive a one term Edgeworth expansion for the MLE of θ in the

N(θ, θ2) distribution.
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