A Review of Matrix Algebra

Basic notation and concepts

vectors

\[\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \]

matrices

\[A_{n \times k} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{pmatrix} = (a_{ij}) \]

Basic Concepts

vectors:
linear independent, length, angle, inner product, perpendicular, projection, Gram-Schimdt procedure, etc.

matrices:
determinant, rank of a matrix, nonsingular, inverse, orthogonal, symmetric, positive definite

Definition: Let \(A = (a_{ij}) \) be a \(k \times k \) matrix. The trace of the matrix \(A \), written \(tr(A) \), is the sum of the diagonal elements. That is \(tr(A) = \sum_{i=1}^{k} a_{ii} \).

Results: Let \(A_{k \times k} \) and \(B_{k \times k} \) be two matrices. Let \(c \) be a scalar.

(a) \(tr(A) = tr(B) \)
(b) \(tr(A \pm B) = tr(A) \pm tr(B) \)
(c) \(tr(AB) = tr(BA) \)
(d) $\text{tr}(B^{-1}AB) = \text{tr}(A)$

(e) $\text{tr}(A^2) = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij}^2$

Definition Let A be a $k \times k$ matrix. Let I be the $k \times k$ identity matrix.

(a) $f(\lambda) = |A - \lambda I|$ is call the characteristic polynomial of A.

(b) $\lambda_1, \lambda_2, \ldots, \lambda_k$, satisfying $f(\lambda) = 0$, are called the eigenvalues of A.

Definition Let A be a $k \times k$ matrix and λ an eigenvalue of A. If \vec{x} is a nonzero vector ($\vec{x} \neq 0$) such that $A\vec{x} = \lambda \vec{x}$, then \vec{x} is said to be an eigenvector of A associated with the eigenvalue λ. Let $\vec{e} = \frac{\vec{x}}{||\vec{x}||}$, then (λ, \vec{e}) is called a pair of eigenvalue-eigenvector of A.

Definition A quadratic function $Q(x)$ in (x_1, x_2, \ldots, x_k) is

$$Q(x) = \vec{x}' A \vec{x},$$

where $\vec{x}' = (x_1, x_2, \ldots, x_k)$ and A is a $k \times k$ symmetric matrix.

Results

1. Eigenvalues of real symmetric matrix are real and so are their corresponding eigenvectors.
2. A symmetric positive definite matrix has real positive eigenvalues.

Spectral Decomposition:

Let A be a $k \times k$ symmetric matrix. Then A can be expressed in terms of its k eigenvalue-eigenvector pairs (λ_i, e_i) as

$$A = \sum_{i=1}^{k} \lambda_i e_i e_i'$$

If A is positive definite, then

$$A^{-1} = \sum_{i=1}^{k} \frac{1}{\lambda_i} e_i e_i'$$
and

\[A^{1/2} = \sum_{i=1}^{k} \sqrt{\lambda_i} e_i e_i' \]

Singular Value Decomposition

Let \(A \) be an \(n \times k \) matrix, then there exists an \(n \times n \) orthogonal matrix \(U \) and an \(k \times k \) matrix \(V \) such that

\[A = U \Lambda V \]

where the \(n \times k \) matrix \(\Lambda \) has \((i, i)\) entry \(\lambda_i \geq 0 \), for \(i = 1, 2, \ldots, \min(n, k) \) and the other entries are zero. The positive constants \(\lambda_i \) are called the singular values of \(A \).

Assume that the rank of \(A \) is \(r \). There exist \(r \) positive constants \(\lambda_1, \lambda_2, \ldots, \lambda_r \), \(r \) orthogonal \(n \times 1 \) unit vectors \(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_r \) and \(r \) orthogonal \(k \times 1 \) unit vector \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r \) such that

\[A = \sum_{i=1}^{k} \lambda_i \vec{u}_i \vec{v}_i' = U_r \Lambda_r V_r \]

where \(U_r = (\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_r) \), \(V_r = (\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r) \), and \(\Lambda_r \) is an \(r \times r \) diagonal matrix with diagonal entries \(\lambda_i \).

Rayleigh-Ritz Theorem

Let \(B_{k \times k} \) be a positive definite matrix with eigenvalues \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0 \) and associated normalized eigenvectors \(\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_k \). Then,

\[
\max_{\vec{x} \neq 0} \frac{\vec{x}' B \vec{x}}{\vec{x}' \vec{x}} = \lambda_1, \text{ (attained when } \vec{x} = \vec{e}_1) \\
\min_{\vec{x} \neq 0} \frac{\vec{x}' B \vec{x}}{\vec{x}' \vec{x}} = \lambda_k, \text{ (attained when } \vec{x} = \vec{e}_k)
\]

Moreover

\[
\max_{\vec{x} \perp \vec{e}_1, \ldots, \vec{e}_i} \frac{\vec{x}' B \vec{x}}{\vec{x}' \vec{x}} = \lambda_i + 1, \text{ (attained when } \vec{x} = \vec{e}_{i+1}, \ i = 2, \ldots, k - 1)
\]