Confidence Interval Based on a Single Sample

An Example

\[X_1, X_2, \ldots, X_n \sim N(\mu, 2) \]

Point estimator: \(\hat{\mu} = \overline{X} \)
\[P(\overline{X} = \mu) = ?? \]

\[P(\mu \in (\overline{X} - l, \overline{X} + l)) = ?? \]

How to determine \(l \)?

Confidence level

Random confidence interval

A sample: 2, 3, 1, 6, 5, 7, 10, 4, 9, 8

Confidence interval

Interpreting a confidence interval

100(1 - \(\alpha \))\% confidence interval for \(\mu \)

\[(\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) \]
Precision and Choice of sample size

\[
w = 2 \cdot z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}
\]

Example: Suppose \(\sigma = 25 \), what sample size is necessary to ensure that the resulting 95% CI has a width of (at most) 10?

General 100(1 − \(\alpha\))% CIs

\[
X_1, X_2, \ldots, X_n \sim f(x; \theta)
\]

\[
(l(X_1, X_2, \ldots, X_n), u(X_1, X_2, \ldots, X_n))
\]

is a 100(1 − \(\alpha\))% CI for \(\theta\) if

\[
P(l(X_1, X_2, \ldots, X_n), u(X_1, X_2, \ldots, X_n)) = 1 - \alpha
\]

CIs for \(\mu\) with \(\sigma\) unknown

\[
X_1, X_2, \ldots, X_n \sim N(\mu, \sigma)
\]

Similarly, \(P(\bar{X} - l \leq \mu \leq \bar{X} + l) = 1 - \alpha\)

How to determine \(l\)??

A new distribution: \(t\) distribution

\[
T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n - 1)
\]
Basic properties
Let t_ν denote the density function curve for ν df.
1. Each t_ν curve is bell-shaped and centered at 0.
2. Each t_ν curve is more spread out than the standard normal curve.
3. As ν increases, the spread of the corresponding t_ν curve decreases.
4. As $\nu \to \infty$, the sequence of t_ν curves approaches the standard normal curve (so the z curve is often called the t curve with df=∞)

t critical values
Let $t_{\alpha,\nu} =$ the number for which the area under the t curve with ν df to the right of $t_{\alpha,\nu}$ is called a t critical value.
Examples

One sample t confidence interval
The $100(1 - \alpha)$% CI for μ is
\[
(\bar{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}, \bar{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}})
\]
Example: 2, 3, 1, 6, 5, 7, 10, 4, 9, 8 $\sim N(\mu, \sigma)$

Prediction interval
suppose
\[
X_1, X_2, \ldots, X_n \sim N(\mu, \sigma)
\]
Use an interval to predict the next observation X_{n+1}
A similar question

\[P(\bar{X} - l \leq X_{n+1} \leq \bar{X} + l) = 1 - \alpha \]

Equivalently,

\[P(-l \leq \bar{X} - X_{n+1} \leq l) = 1 - \alpha \]

\[E(\bar{X} - X_{n+1}) \]

\[V(\bar{X} - X_{n+1}) \]

Result: A prediction interval (PI) for a single observation \(t \) be selected from a normal distribution is

\[(\bar{x} - t_{\alpha/2,n-1} \cdot \sqrt{1 + 1/n} \cdot \bar{x} + t_{\alpha/2,n-1} \cdot \sqrt{1 + 1/n}) \]

The prediction level is \(100(1 - \alpha)\% \).

Example: \(n=10, \bar{x} = 21.90, s = 4.134 \), construct the 95% PI for the next observation.

Confidence intervals without normality assumption

A large-sample interval for \(\mu \)

If \(n \) is sufficiently large \((n > 40)\), the standardized variable

\[\frac{\bar{X} - \mu}{S/\sqrt{n}} \]

has approximately a standard normal distribution. This implies that

\[(\bar{x} - z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}) \]
is a large-sample confidence interval for μ with confidence level approximately $100(1 - \alpha)\%$.

A large-sample CI for a population proportion p

Point estimator: $\hat{p} = X/n$

$E(\hat{p}) = p$

$V(\hat{p}) = \frac{p(1-p)}{n}$

When n is large, \hat{p} is approximately normally distributed

$$P(-z_{\alpha/2} \leq \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \leq z_{\alpha/2}) \approx 1 - \alpha$$

Hence, a CI with confidence level approximately $100(1 - \alpha)\%$ has

left endpoint = \[
\frac{\hat{p} + \frac{z_{\alpha/2}^2}{2n} - \frac{z_{\alpha/2}\sqrt{\hat{p}\hat{q}}}{n} + \frac{z_{\alpha/2}^2}{4n^2}}{1 + \left(\frac{z_{\alpha/2}^2}{n}\right)}
\]

and

right endpoint = \[
\frac{\hat{p} + \frac{z_{\alpha/2}^2}{2n} + \frac{z_{\alpha/2}\sqrt{\hat{p}\hat{q}}}{n} + \frac{z_{\alpha/2}^2}{4n^2}}{1 + \left(\frac{z_{\alpha/2}^2}{n}\right)}
\]