Lecture 4: Discrete Random Variables and Probability Distributions

Definition: \((E, S)\): Experiment and Sample Space.
\(\mathcal{R}\): all real numbers.
Random variable: \(X: \mathcal{S} \rightarrow \mathcal{R}\).
\[X(s) = x\]

Examples:
Toss an unfair coin.
Toss an unfair coin until head.
Toss two fair 4-sided dice.
Randomly select a student on campus.
1. gender
2. undergraduate/graduate
3. which year
4. height

Discrete Random Variable vs Continuous Random Variable
Bernoulli Random Variable

Probability Distributions for d.r.v
Toss two fair dice (continued):
\[S = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)\} \]

Random variable \(Y \): the sum of the outcomes

possible values \(2, 3, 4, 5, 6, 7, 8\)
probabilities

Probability Distribution or Probability Mass Function

For each possible value \(x \), \(p(x) \): the prob. of observing \(x \) when the experiment is performed

Bernoulli r.v.

\[
p(x) = \begin{cases}
1 - \alpha & \text{if } x = 0 \\
\alpha & \text{if } x = 1 \\
0 & \text{otherwise}
\end{cases}
\]

• Bernoulli distribution
• \(\alpha \) called parameter
• Family of Bernoulli distributions

Toss a coin until head (continued):

\(X \): the number of tosses
Let $P(H) = p$,
$P(X = 1)=P(H) = p$
$P(X = 2)=P(TH) = P(T)P(H) = (1−p)p$
$P(X = 3)=P(TTH) = P(T)P(T)P(H) = (1−p)^2p$
In general, if x is an positive integer,
$P(X = x)=

Tire Example

X: the number of tires on a randomly selected car that are underinflated. Its probability mass function is given as follows,

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(x)$</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Compute $P(2 \leq X \leq 4)$ and $P(X \neq 0)$.

Another Representation of Probability Distribution

Tire Example continued

Let’s calculate $P(X \leq x)$ for any given x

If $x < 0$, $P(X \leq x)=0$

If $x = 0$, $P(X \leq 0) = P(X = 0) = 0.4$

If $0 < x < 1$, $P(X \leq x) = P(X = 0) = 0.4$

If $x = 1$, $P(X \leq x)=P(X = 0)+P(X = 1)=0.4+0.1=0.5$

If $1 < x < 2$, $P(X \leq x)=0.5$

if $2 \leq x < 3$, $P(X \leq x)=0.6$

if $3 \leq x < 4$, $P(X \leq x)=0.7$

if $x \geq 4$, $P(X \leq x)=1$
Hence, \(P(X \leq x) \) is defined for any \(x \), it is called cumulative distribution function, denoted by \(F(x) \).

Step function

Definition The cumulative distribution function (cdf) \(F(x) \) of a discrete rv \(X \) with pmf \(p(x) \) is defined for every number \(x \) by

\[
F(x) = P(X \leq x) = \sum_{y:y\leq x} p(y)
\]

For any number \(x \), \(F(x) \) is the probability that the observed value of \(X \) will be at most \(x \).

Calculate Probability Using cdf \(F(x) \)

For any two numbers \(a \) and \(b \) with \(a \leq b \),

\[
P(a \leq X \leq b) = F(b) - F(a-)
\]

where \(a- \) represents the largest possible value of \(X \) that is strictly less than \(a \).

- pmf and cdf are equivalent.

Measure Location and Dispersion of Probability Distributions

Expected value (or mean value, or population mean)
Suppose D is the collection of all possible values of X, and \(p(x) \) is the pmf.

\[
E(X) = \mu_x = \sum_{x \in D} x \cdot p(x)
\]

Tire Example continued

Expected Value of a Function of X
Let \(h(X) \) be any function depending on \(X \), then

\[
E(h(X)) = \mu_{h(X)} = \sum_{D} h(x) \cdot p(x)
\]

Proposition

\[
E(aX + b) = aE(X) + b
\]

or

\[
\mu_{aX+b} = a \cdot \mu_X + b
\]

Tire Example continued
Suppose the time used to inflate the tires is \(0.5x^2 \), where \(x \) is the number of underinflated tire.

Variance of \(X \)
Let \(X \) have pmf \(p(x) \) and expected value \(\mu \). Then the variance of \(X \), denoted by \(V(X) \), or \(\sigma_X^2 \), or just \(\sigma^2 \), is

\[
V(X) = \sum_{D}(x - \mu)^2 \cdot p(x) = E((X - \mu)^2)
\]
The standard deviation (SD) of \(X \) is
\[
\sigma_X = \sqrt{\sigma_X^2}
\]

Example

Proposition
1.
\[
V(h(X)) = \sigma_{h(X)}^2 = \sigma_D(h(X) - E(h(X)))^2 \cdot p(x)
\]
2.
\[
V(aX + b) = \sigma_{aX+b}^2 = a^2 \cdot \sigma_X^2 \text{ and } \sigma_{aX+b} = |a| \cdot \sigma_X
\]
3.
\[
V(X) = E(X^2) - (E(X))^2
\]

Useful Probability Distributions

Binomial Probability Distribution
1. A sequence of \(n \) trials
2. The trials are identical, each with two outcomes, denoted by \(S \) or \(F \).
3. The trials are independent.
4. \(P(S) = \) constant, denoted by \(p \)

Binomial Experiment

Example: Toss a coin 10 times, \(X \): the number of heads

Approximate Binomial Experiment

Example: Select 10 students on campus, \(X \): the number of female
student

Definition: Given a binomial experiment consisting of n trials (exact or approximate), let

$$X = \text{the number of } S\text{'s among the } n \text{ trials.}$$

X is a binomial random variable.

Possible values?

pmf $b(x; n, p)$?

Example: $n=4$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b(x; 4, p)$</td>
<td>$b(0; 4, p)$</td>
<td>$b(1; 4, p)$</td>
<td>$b(2; 4, p)$</td>
<td>$b(3; 4, p)$</td>
<td>$b(4; 4, p)$</td>
</tr>
</tbody>
</table>

$b(0; 4, p) = P(X = 0) = P(FFFF) = P(F)P(F)P(F)P(F) = (1-p)^4$

$b(1; 4, p) = P(X = 1) = P(SFFF + P(FSSF) + P(FSFS) + P(FFFS) = (1-p)^3p + (1-p)^3p + (1-p)^3p + (1-p)^3p = 4(1-p)^3p$

Similarly,
\[b(3; 4, p) = 4(1 - p)p^3 \]
\[b(4; 4, p) = p^4 \]

General Formula

\[X \sim \text{Bin}(n, p) \]

pmf:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(p(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\binom{n}{0} (1 - p)^n p^0)</td>
</tr>
<tr>
<td>1</td>
<td>(\binom{n}{1} (1 - p)^{n-1} p^1)</td>
</tr>
<tr>
<td>2</td>
<td>(\binom{n}{2} (1 - p)^{n-2} p^2)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(i)</td>
<td>(\binom{n}{i} (1 - p)^{n-i} p^i)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(n)</td>
<td>(\binom{n}{n} (1 - p)^0 p^n)</td>
</tr>
</tbody>
</table>

cdf of binomial distribution
\[P(X \leq x) = B(x; n, p) = \sum_{y=0}^{x} b(y; n, p) \]

For \(n = 5, 10, 15, 20, 25 \), and \(p = 0.01, 0.05, \ldots, 0.95, 0.99 \), the probabilities are given in Appendix Table A.1

Mean and Variance

\[E(X) = np \]
\[V(X) = n(1 - p)p \]

Examples 3.48

Poisson Probability Distribution

\(X \): the number of events in a specific time period (or in a specific region)

Examples:
- the number of phone calls at an office
- the number of accidents at an intersection
- the number of certain animals found in a square mile area

\[X \] is a Poisson r.v., its pmf (Poisson distribution) is

\[p(x; \lambda) = \begin{cases} \frac{\lambda^x e^{-\lambda}}{x!} & x = 0, 1, 2, 3, \ldots \\ 0 & \text{otherwise} \end{cases} \]

Cumulative Distribution function (cdf)
\[F(x; \lambda) = \sum_{y=0}^{y=x} \frac{\lambda^y e^{-\lambda}}{y!} \]

cdf of Poisson distributions are given in Table A.2

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(x; \lambda))</td>
<td>(\frac{\lambda^0 e^{-\lambda}}{0!})</td>
<td>(\frac{\lambda^1 e^{-\lambda}}{1!})</td>
<td>(\frac{\lambda^2 e^{-\lambda}}{2!})</td>
<td>(\frac{\lambda^3 e^{-\lambda}}{3!})</td>
<td>(\frac{\lambda^4 e^{-\lambda}}{4!})</td>
<td>(\frac{\lambda^5 e^{-\lambda}}{5!})</td>
<td>(\frac{\lambda^6 e^{-\lambda}}{6!})</td>
<td>(\frac{\lambda^7 e^{-\lambda}}{7!})</td>
<td>(\frac{\lambda^8 e^{-\lambda}}{8!})</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Proposition

\[
\sum_{x=0}^{x=+\infty} p(x; \lambda) = \frac{\lambda^0 e^{-\lambda}}{0!} + \frac{\lambda^1 e^{-\lambda}}{1!} + \frac{\lambda^2 e^{-\lambda}}{2!} + \frac{\lambda^3 e^{-\lambda}}{3!} + \frac{\lambda^4 e^{-\lambda}}{4!} + \ldots = 1
\]

\[
E(X) = \sum_{x=0}^{+\infty} x \cdot p(x; \lambda)
\]

\[
= 0 \cdot \frac{\lambda^0 e^{-\lambda}}{0!} + 1 \cdot \frac{\lambda^1 e^{-\lambda}}{1!} + 2 \cdot \frac{\lambda^2 e^{-\lambda}}{2!} + 3 \cdot \frac{\lambda^3 e^{-\lambda}}{3!} + 4 \cdot \frac{\lambda^4 e^{-\lambda}}{4!} + \ldots = \lambda
\]

\[
E(X^2) = \sum_{x=0}^{+\infty} x^2 \cdot p(x; \lambda)
\]

\[
= 0^2 \cdot \frac{\lambda^0 e^{-\lambda}}{0!} + 1^2 \cdot \frac{\lambda^1 e^{-\lambda}}{1!} + 2^2 \cdot \frac{\lambda^2 e^{-\lambda}}{2!} + 3^2 \cdot \frac{\lambda^3 e^{-\lambda}}{3!} + 4^2 \cdot \frac{\lambda^4 e^{-\lambda}}{4!} + \ldots = \lambda^2 + \lambda
\]

What are the mean and variance of \(X \)?

Connection with Binomial Distributions

Suppose that in the binomial pmf \(b(x; n, p) \), we let \(n \to \infty \) and \(p \to 0 \) in such a way that \(np \) approaches a value \(\lambda > 0 \). Then
\[b(x; n, p) \to p(x; \lambda) \]

In any binomial experiment in which \(n \) is large and \(p \) is small,

\[b(x; n, p) \approx p(x; \lambda) \text{ where } \lambda = np, \]

when

\[n \geq 100, p \leq 0.01 \text{ and } np \leq 20 \]

Examples 3.81 and 3.82