Lecture 2 Location, Dispersion and Boxplot

Notation: x_1, x_2, \ldots, x_n

Example 1 (continued):
63.0, 64.1, 65.2, 66.1, 64.3, 66.2, 67.1, 62.5,
68.5, 66.3, 66.7, 70.1, 66.6, 69.4, 67.1

Mean (sample mean): arithmetic average.

$$\bar{x} = \frac{x_1 + x_2 + \cdots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Interpretations:

Drawback:

Alternative measures?
Median (sample median): middle point, denoted by \tilde{x}

Steps to derive \tilde{x}:

1. ordering the observations from smallest to largest.

 \[x(1), x(2), \ldots, x(n) \]

2. if n is odd, \tilde{x} = the single middle value

 if n is even, \tilde{x} = the average of the two middle values

Median divides the sample into two subsamples:

 if n is even:

 \[\{x(1), x(2), \ldots, x\left(\frac{n}{2}\right)\} \text{ and } \{x\left(\frac{n}{2}\right)+1, \ldots, x(n)\} \]

 if n is odd:

 \[\{x(1), x(2), \ldots, x\left(\frac{n+1}{2}\right)\} \text{ and } \{x\left(\frac{n+1}{2}\right), \ldots, x(n)\} \]

Lower subsample and upper subsample
Other measures of location:

Quartiles:

first quartile (lower fourth), Q_1:
median of lower subsample

second quartile, Q_2:
median of the whole sample

third quartile (upper fourth), Q_3:
median of upper subsample

InterQuartile Range (IQR) (fourth spread):

$$IQR = Q_3 - Q_1$$

Percentiles: be discussed later
Measures of dispersion

An extreme example:

sample 1: -100, -80, -40, -20, 0, 20, 40, 80, 100
sample 2: -10, -8, -4, -2, 0, 2, 4, 8, 10
sample 3: -1, -.8, -.4, -.2, 0, .2, .4, .8, 1

Conclusion:

Sample: \(x_1, x_2, \ldots, x_n\); sample mean: \(\bar{x}\)

Deviations:

\(x_1 - \bar{x}, x_2 - \bar{x}, \ldots, x_n - \bar{x}\)

Sample Variance \(s^2\):

\[
s^2 = \frac{\sum(x_i - \bar{x})^2}{n - 1} = \frac{S_{xx}}{n - 1}
\]

Sample standard deviation \(s\):

\[
s = \sqrt{s^2}
\]

Why \(n - 1\) instead of \(n\)?
A computing formula for s^2:

$$S_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$$

Proposition:

Let x_1, x_2, \ldots, x_n be a sample and c be any nonzero constant.

1. if $y_1 = x_1 + c, y_2 = x_2 + c, \ldots, y_n = x_n + c$, then
 $$s_y^2 = s_x^2$$

2. if $y_1 = cx_1, y_2 = cx_2, \ldots, y_n = cx_n$, then
 $$s_y^2 = c^2 s_x^2$$

where s_x^2 is the sample variance for the x’s and s_y^2 is the sample variance for the y’s.
Steps to construct boxplot:

1. Q_1, Q_2(median), Q_3 and IQR.

2. smallest and largest observations in $[Q_1-1.5\text{IQR},Q_3+1.5\text{IQR}]$ or $[Q_1+1.5\text{IQR},Q_3+3\text{IQR}]$.

Suppose they are x_l and x_u.

3. mild outliers, i.e., observations in $[Q_1-3\text{IQR},Q_3-1.5\text{IQR}]$ or $[Q_1+1.5\text{IQR},Q_3+3\text{IQR}]$.

4. extreme outliers, i.e. observations less than $Q_1-3\text{IQR}$ or larger than $Q_3+3\text{IQR}$.

5. construct a rectangle above a horizontal axis with left edge (Q_1), right edge (Q_3), a inside vertical line (median).

6. Draw a whisker from Q_1 to x_l, and a whisker from Q_3 to x_u.

7. Plot mild outliers with solid dots, extreme outliers with cycles.