Point Estimation, Large-Sample C.I.s for a Population Mean

Chapter 7: Estimation and Statistical Intervals
7.1 Point Estimation

• In Statistics, in many cases we are interested in a certain population and its parameter(s)

• To get big picture about the population, we measure statistics from random samples

• Examples of parameters vs. statistics: μ vs. sample mean, σ vs. sample s.d., etc
Point Estimators

• Sample statistics, when used to estimate population parameters, are called “point estimators”

 – The statistic \bar{X} is a point estimate for μ, etc.

 – Other examples?
Unbiased (ideally)

• Estimates can be *unbiased*
 – From chapter 5, we know that the mean \(\mu \) is \(\overline{X} \).
 – If the mean of an estimate is the population parameter it estimates, we call that estimate “unbiased”.
 – So clearly \(\overline{X} \) is an unbiased estimate of \(\mu \).
 – See Figure 7.1 on Page 292, in the textbook

• \(\hat{P} \) is also an unbiased estimate of ____?
• Caution: not all “good” estimators are unbiased, but in most cases it’s preferred when statistics are unbiased.
Consistent Estimators

• Again consider \bar{X}, recall that the standard deviation of \bar{X} is σ / \sqrt{n}.

• What happens to the standard deviation as the sample size:
 – increases?
 – goes to infinity?

• If an estimator converges to the population parameter, with probability 1, when the sample size increases, we call the estimator a consistent estimator.

• \bar{X} is a consistent estimator for μ
7.2 Large Sample Confidence Intervals for a Population Mean

• **Example 1:**
 – Suppose we observe 41 plots of corn with yields (in bushels), randomly selected
 – Sample Mean, $\bar{X} = 123.8$
 – Sample Standard Deviation $= 12.3$
 – What can be said about the (population) mean yield of this variety of corn?
Sampling Distribution

• Assume the yield is $N(\mu, \sigma)$ with unknown μ and σ

• Then $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$

• Now while we don’t know σ, we can replace it with the sample standard deviation, s.

• It turns out that when n is large, replacement of σ with s does not change much (for now)

• So,

$$s_{\bar{X}} = \frac{s}{\sqrt{n}} = \frac{12.3}{\sqrt{41}} = 1.92$$

Lecture 11
2σ rule

- 68-95-99.7% rule: 95% of time sample mean is approximately within 2 standard deviations of population mean

 $- 2 \times 1.92 = 3.84 \text{ from } \mu$

- Thus, 95% of time:
 $\mu - 3.84 < \bar{X} < \mu + 3.84$
Figure 7.3 Capturing a central z curve area of .95
Put differently: 95% of time

\[\bar{X} - 3.84 < \mu < \bar{X} + 3.84 \]

• In the long-run (with large number of repeated samplings), the random interval covers the unknown (but nonrandom) population parameter \(\mu \) 95% of time.
• Our confidence is 95%.
• We need to be extremely careful when observing this result.
Example 1 (cont):

\[\bar{X} \pm 3.84 \]

(119.96, 127.64)

- This *particular* confidence interval may contain \(\mu \) or not...
- However, such a systematic **method** gives intervals covering the population mean \(\mu \) in 95% of cases.
- Each interval is NOT 95% correct. Each interval is 100% correct or 100% wrong.
 - It’s the **method** that is correct 95% of the time
Figure 7.5 95% confidence intervals for μ from 100 different samples (* identifies an interval that does not include μ)
Confidence Intervals (CIs):

• Typically: estimate ± margin of error

• Always use an interval of the form (a, b)

• Confidence level (C) gives the probability that such interval(s) will cover the true value of the parameter.
 – It does not give us the probability that our parameter is inside the interval.
 – In Example 1: C = 0.95, what Z gives us the middle 95%? (Look up on table)
 Z-Critical for middle 95% = 1.96
 – What about for other confidence levels?
 • 90%? 99%?
 • 1.645 and 2.575, respectively.
A large-sample Confidence Interval:

• Data: SRS of n observations (large sample)
• Assumption: population distribution is \(N(\mu, \sigma) \) with unknown \(\mu \) and \(\sigma \)
• General formula:

\[
\bar{X} \pm (z \text{ critical value}) \frac{s}{\sqrt{n}}
\]
After Class...

• Read Sec 7.1 and 7.2, understand the meaning of “confidence level”.

• Review Ch.1, 2 and 5. Make your own Cheat-Sheet (one page, handwritten)
 – Practice Test
 – Review notes, hw and conceptual Qs in Lab