Chapter 5 Statistical Inference

5.2 Probability Model

\(\text{\textcircled{96}} \): Life span of an iPhone \(\sim \) exponential(1)

95% interval \((0, c)\) where

\[
0.95 = \int_0^c e^{-x} \, dx = 1 - e^{-c} \Rightarrow c = -\log(0.05) = 2.9957
\]

A range, likely in most cases, for the life span of an iPhone.

An educated guess.

5.3 Statistical Model

\(\Theta \) (parameter of the model) \(\subseteq \Omega \) (parameter space)

Model \(\Theta_1 = M \Theta_2 \iff \Theta_1 = \Theta_2 \)

Assume \(X \) has density \(f_\Theta \), take a simple random sample \(X_1, X_2, \ldots, X_n \) (identically distributed and independent \(i.i.d. \)), their joint density is \(f_{\Theta_1}(X_1) f_{\Theta_2}(X_2) \cdots f_{\Theta_n}(X_n) \), which is a model for a sample.

\(\text{\textcircled{96}} \): Life span \(X_1 \sim X_5 : (5, 3.5, 3.3, 4.1, 2.8) \) exponential(1) \(\Theta ?? \)

\(X^* \sim X^* : (2, 2.5, 1.8, 1.1, 3.2) \) \(\Theta ?? \)

different values. exponential(1) is model assumption. Model checking needed.
5.4. Data Collection
Observational : passive., randomness not guaranteed
Population: all the objects.
Finite Population: finite # of objects
Quantitative variable: numerical values. \(X \) (age)
Categorical variable: gender
different analysis tools

Population distribution = Probability distribution (model)
\(F(x) = P(X \leq x) \).

Empirical distribution estimated from data
\[\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I_{(-\infty, x]}(X_i). \]
\# of samples \(n \) \leq X

Sampling: 1 simple random sampling
draw objects without replacement
2 representative sample (IRS), tails of income distribution
online sample — selection bias.

Sample size requirement:
very small sample size \(\Rightarrow \) no reliable conclusion.
Survey sample: non-response rate.
Basic graphical inferences:

1. **Histogram** - numerical (quantitative) variable. A sample X_1, \ldots, X_n, divided into intervals $[h_1, h_2], [h_2, h_3], \ldots, [h_{m-1}, h_m]$. Equal sized.

2. **Box plot**: $Q_3 - Q_1 = \text{interquartile range.}$

3. **QQ plot** (normal) - numerical variable.

- $X(1) \leq X(2) \leq \cdots \leq X(n)$
- vs.
- $Y(1) \leq Y(2) \leq \cdots \leq Y(n)$

$\widetilde{Y}(p) \leq \widetilde{Y}(p_2) \leq \cdots \leq \widetilde{Y}(p_n)$

- p_i plotting positions, (probabilities)

- e.g. $p_i = \frac{i - 0.5}{n}$
5.4.20. A population \(\Phi \) contains 2 subpopulations \(\Phi_1 \) and \(\Phi_2 \). Size of \(\Phi_1 \) is \(p \) (0 ≤ \(p \) ≤ 1). Measure a variable \(X \) on a selected object \(\xi \) from \(\Phi_1 \).

1. \(f_1(x) = p f_1(x) + (1-p) f_2(x) \).
2. \(M = p M_1 + (1-p) M_2 = \int_{-\infty}^{\infty} x (pf_1(x) + (1-p)f_2(x)) \, dx \).
3. \(\sigma^2 = \left(\int_{-\infty}^{\infty} x^2 [pf_1(x) + (1-p)f_2(x)] \, dx \right) - M^2 \)
 \[\sigma^2 = p(\sigma_2^2 + M_2^2) + (1-p)(\sigma_1^2 + M_1^2) - (pM_1 + (1-p)M_2)^2 \]
 \[\sigma^2 = p\sigma_1^2 + (1-p)\sigma_2^2 + p(1-p)(M_1 - M_2)^2 \].
4. Take i.i.d. sample of \(N_1 = pn \) and \(N_2 = (1-p)n \)
 from \(\Phi_1 \) and \(\Phi_2 \) respectively.

Proportional stratified sampling,
\[\bar{X}_1 = \hat{M}_1, \quad \bar{X}_2 = \hat{M}_2, \quad p \bar{X}_1 + (1-p) \bar{X}_2 = \hat{M}. \]
Descriptive Statistics:
a sample $x_1, x_2, \ldots, x_n \sim \text{i.i.d. } f(x)$
sample mean $\overline{X} = (x_1 + x_2 + \ldots + x_n) / n$
sample variance $s^2 = \frac{1}{n-1} \sum (x_i - \overline{X})^2$
sample standard deviation $\sqrt{s^2} = sd.$
pth quantile ($0 \leq p \leq 1$) t_p defined as $F(t_p) = p.$
sample quantiles:
ordered $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$
we have $\frac{i-1}{n} < p \leq \frac{i}{n}$.

$p \hat{=} t_p = x_{(i)} + n(\overline{x} - x_{(i-1)}) \times (p - \frac{i-1}{n})$
linear interpolation b/w $x_{(i)}$ and $x_{(i-1)}$.

$p = 0.25, 0.5, 0.75, 0.95$
Q1, Q2, Q3 quartiles.

$p = 0.5$ for median (a robust center of dist'n).

Statistical Inference:
1. estimate a parameter - point estimation
2. confidence interval/region for θ
3. hypothesis test (parametric θ value)
4. bayes analysis.
5.5.2 Waiting time (minutes)

0, 1min 2m 3m 4m 5m 10m 15m

1 2 3 4 5 8

5.5.2 Waiting time (minute)

15, 10, 2, 3, 1, 0, 4, 5, 5, 3, 3, 4, 2, 1, 4, 5

0m 1m 2m 3m 4m 5m 10m 15m

1 \underline{2} \underline{3} 3 3 3 1 1. total = 16

(b). density for proportion

\[\begin{array}{c}
\frac{3}{16} \\
\frac{2}{16} \\
\frac{1}{16} \\
\frac{1}{16}
\end{array} \]

(a). Empirical distribution

\[\begin{array}{c}
\frac{3}{16} \\
\frac{3}{16} \\
\frac{1}{16}
\end{array} \]

(b) \(\bar{X} = \frac{\text{sum}}{16} = 4.188 \) \(\bar{S}^2 = 13.63 \)

(c) Q1 = 2, Q2 = 3.5, Q3 = 5. IQR = 3