Chapter 7
March 23, 2014

Statistical Inference

7.1 Basic Properties of Confidence Intervals

Chapter Overview

- Basics Confidence Intervals (C.I.)
- Large-Sample Confidence Intervals for Population Mean and Proportion
 - C.I. for mean \(\mu \)
 - C.I. for proportion
 - One-sided intervals
- Intervals Based on a Normal Population Distribution for mean
 - \(t \) distribution
 - One sample \(t \) C.I.
- Confidence Intervals for the Variance and Standard Deviation of a Normal Population

What is a Confidence Interval? Point Estimate vs. Confidence Interval

To estimate a parameter of a population. Say \(\mu \) of a normal distribution. Given the observed value \(x_1, x_2, \ldots, x_n \) of a random sample \(X_1, \ldots, X_n \). We can:

- Find an point estimate of \(\mu \) using the sample mean \(\bar{x} = \frac{x_1 + x_2 + \cdots + x_n}{n} \)
- For different observed values, we may have different estimates for \(\mu \).
- Which estimate is closer to the true value? No idea

Instead, we may provide an interval of values of \(\mu \):

- Make this interval include the true value of \(\mu \) with a certain “level of confidence” (say 0.95)
- Narrow interval \(\rightarrow \) precise estimate
- Point estimator and error of estimator combined.

Start With An Example

Example 7.1.1 Want to estimate the mean \(\mu \) of a normal population. Know \(\sigma = 2.0 \).
For a random sample of size \(n \): \(X_1, X_2, \ldots, X_n \). Let us use \(\mu = \bar{X} \).

1. What is the distribution of \(\bar{X} \)? What is the distribution of \(\frac{\bar{X} - \mu}{\sqrt{\sigma}} \)?

2. Find \(c \) such that \(P \left(-c < \frac{\bar{X} - \mu}{\sqrt{\sigma}} < c \right) = 0.95 \)? Find the interval of \(\mu \).

3. Given the observed sample \(n = 10 \): \{2,3,1,6,5,7,10,4,9,8\}. The estimate of \(\mu = \bar{x} = 5.5 \). Redo part 2.
Definition of C.I. of Normal Mean μ

Definition 1. After observing $X_1 = x_1$, $X_2 = x_2$, \ldots, $X_n = x_n$. We compute the the observed sample mean \bar{x} and the 95% C.I. for μ is:

\[
\left(\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}} \right)
\]

or with 95% confidence:

\[
\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}}
\]

Example 7.1.2 A normal population has unknown μ and $\sigma = 2.0$, if $n = 31$ and $\bar{x} = 80.0$, what is the 95% C.I.?

\[
\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}} =
\]

Defining Confidence Intervals

Defining Confidence Intervals

μ
Interpreting a C.I.

- Given a 95% C.I., it is not entirely correct to say \(\mu \) falls in the C.I. with probability 0.95.
- Look at the probability \(P \left(-1.96 < \frac{X - \mu}{\sigma} < 1.96 \right) = 0.95 \), when substitute \(X \) with observed value \(\bar{x} \), no randomness left.
- A precise way to interpret C.I. is: with 95% confidence, \(\mu \) falls in the interval calculated.

Choosing a Different Confidence Level

Example 7.1.1 We found the C.I. using \(P \left(-1.96 < \frac{X - \mu}{\sigma} < 1.96 \right) = 0.95 \), i.e., \(P \left(-z_{0.05/2} < \frac{X - \mu}{\sigma} < z_{0.05/2} \right) = 0.95 \), if we change 0.95 to 0.90, we say the confidence level is changed to 90%.

\[
P \left(-z_{0.10/2} < \frac{X - \mu}{\sigma} < z_{0.10/2} \right) = 0.90
\]

The 90% C.I. of the mean \(\mu \) is then:

\[
\bar{x} \pm z_{0.10/2} \frac{\sigma}{\sqrt{n}}
\]

Definition 2. A 100(1 - \(\alpha \))% C.I. for the mean \(\mu \) of a normal population when the value of \(\sigma \) is known is given by:

\[
\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right)
\]

Example 7.1.3 Normal standard error \(\sigma \) = 0.100. Sample gives \(\bar{x} = 5.426 \), sample size 40. Choose \(\alpha = 0.1 \), find the (1 - \(\alpha \))100% C.I. for mean \(\mu \).

Confidence Level, Sample Size and Precision

- **Review** A (1 - \(\alpha \))100% C.I. for the mean \(\mu \) of a normal population when the value of \(\sigma \) is known is given by:

\[
\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right)
\]

- Want narrow C.I. with high confidence level.

Example 7.2.1 Normal population, with unknown mean \(\mu \), and standard deviation \(\sigma = 2.0 \). Sample of size 25 yields \(\bar{x} = 1.0 \). What’s the 100%, 95% and 90% C.I. for \(\mu \)? Suppose a sample of size 100 also yields \(\bar{x} = 1.0 \), what’s the 90% C.I.? Which of the above is narrower?

Example 7.2.2 Normal population, with unknown mean \(\mu \), 90% and 95% C.I.’s give: \((-0.30, 6.30), (-0.82, 6.82)\). Which one is the 95% C.I.?

Confidence Level, Sample Size and Precision

- Larger sample size \(n \) result in narrower C.I., lower confidence level result in narrower C.I.
• Confidence level cannot be too high, say, 100% will result in \((−\infty, \infty)\).

• One strategy: specify desired confidence level and interval width then determine sample size

Finding the Sample Size

Example 7.2.3 Want to estimate a normal population mean \(\mu\). Standard deviation is \(\sigma = 25\). What sample size is necessary to ensure that the 95% C.I. has a width of (at most) 10? Width of C.I. = \(\bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} - \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 2z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\) So, \(10 = 2z_{\alpha/2} \frac{25}{\sqrt{n}}\), and \(\alpha = 1 - 0.95 = 0.05\), so \(z_{0.025} = 1.96\), thus:

We got: \(n = 96.04\), so sample size is at least 97. General formula: sample size \(n\) necessary to ensure an interval width \(w\) for confidence level \((1 - \alpha)100\%\), we get \(w = 2z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\) and so:

\[
n = \left\lceil \frac{(2z_{\alpha/2} \cdot \frac{\sigma}{w})^2}{2} \right\rceil
\]

7.2 Large-Sample C.I. for a Population Mean and Proportion

Large-sample C.I. for Population Mean

Let \(X_1, X_2, \cdots, X_n\) be a random sample from an unknown population having unknown mean \(\mu\) and unknown standard deviation \(\sigma\). How to find \((1 - \alpha)100\%\) C.I.?

By CLT, \(\bar{X}\) approximately normal: mean \(\mu\), std dev \(\frac{\sigma}{\sqrt{n}}\). So,

\[
Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)
\]

Thus, we find C.I. by:

\[
P\left(-z_{\alpha/2} < \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < z_{\alpha/2}\right) \approx 1 - \alpha
\]

We get,\((1 - \alpha)100\%\) C.I. for \(\mu\) is:

\[
\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)
\]

In the expression \(\sigma\) is still unknown. For large sample sizes, we may replace it with sample standard deviation \(S\):

\[
\left(\bar{X} - z_{\alpha/2} \frac{S}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{S}{\sqrt{n}}\right)
\]

For a given sample \(x_1, x_2, \cdots, x_n\), plug in \(\bar{X} = \bar{x}\) and \(S = s\) in the above expression.

Examples

Example 7.2.4 Unknown distribution, with mean \(\mu\) and standard deviation \(\sigma\). Want to find the 95% C.I. of the mean. A sample of size 196 yields \(\bar{x} = 2.0\) and \(s = 3.0\). Find the C.I.

\[
\bar{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}
\]
Large-sample C.I. for Population Proportion \(p \)

Let \(p \) denote the proportion of "success" in a population. Let \(X \) be the number of successes in a sample of size \(n \):
\[X \sim \text{Binomial}(p) \]
\(n \) large, \(np > 10, n(1-p) > 10 \):
\[X \sim \text{Normal}, \mu = np, \sigma = \sqrt{np(1-p)} \]
Estimate \(p \) using \(\hat{p} = \frac{X}{n} \), \(\hat{p} \sim \text{Normal} \) with
\[\mu = p, \sigma = \frac{\sqrt{p(1-p)}}{\sqrt{n}} \]

\[\frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0, 1) \]

To find \((1-\alpha)100\%\) C.I., look at:
\[P \left(-z_{\alpha/2} < \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} < z_{\alpha/2} \right) \approx 1 - \alpha \]

Finding the C.I.

Solving the inequality, we get the \((1-\alpha)100\%\) C.I. of \(p \):

\[\hat{p} + \frac{z_{\alpha/2}^2}{2n} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p}) + \frac{z_{\alpha/2}^2}{4n^2}}{1 + \frac{z_{\alpha/2}^2}{n}}} \]

lower confidence limit=

\[\hat{p} + \frac{z_{\alpha/2}^2}{2n} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p}) + \frac{z_{\alpha/2}^2}{4n^2}}{1 + \frac{z_{\alpha/2}^2}{n}}} \]

upper confidence limit=

When \(n \) is large, we get:

lower confidence limit=\(\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \)

upper confidence limit=\(\hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \)

Examples

Example 7.3.1 Among 10000 cats in IN, 20% are found to be long-hairs. What is the 99% C.I. for the proportion \(p \) of long-hairs in Indiana?

\[\left(\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right) \]

C.I. For Normal Mean \(\mu \) with Unknown \(\mu \) and \(\sigma \)

Let \(X_1, X_2, \cdots, X_n \) be a random sample from Normal with unknown \(\mu \) and \(\sigma \). Want to find a C.I. for \(\mu \). Need to introduce a new distribution:

Theorem 3. When \(\bar{X} \) is the mean of a random sample of size \(n \), and \(S \) is the sample standard deviation from a normal distribution with mean \(\mu \), then the rv:

\[T = \frac{\bar{X} - \mu}{S / \sqrt{n}} \]

has a \(t \) distribution with degree of freedom(df) \(n-1 \), denoted by \(t_{n-1} \).
Properties of t Distribution

The density curve of a t with df ν:

- Bell-shaped
- More spread out than the standard normal (z) curve - heavier tails
- t curve becomes less spread out when ν increases
- t becomes standard normal when $\nu \rightarrow \infty$

\textit{t}_α,ν Notation and t Table

- The notation $t_{\alpha,\nu}$ is the value on the measurement axis for which the area under the t curve with df=ν to the right of $t_{\alpha,\nu}$ is α; $t_{\alpha,\nu}$ is called t critical value.
- The $t_{\alpha,\nu}$ values are tabulated.
- Example 7.4.1 Find $t_{0.1,10}, t_{0.001,30}, t_{0.05,120}$.
- Example 7.4.2 Determine the t critical value that will capture the desired t curve when:
 - Central area= 0.95, df=16
 - Lower-tail area= 0.1, df=16
- Example 7.4.3 For an rv T which follows a t dist with df=$n-1$, what is $P\left(-t_{\alpha/2,n-1} < T < -t_{\alpha/2,n-1}\right)$?
The One-sample \(t \) Confidence Interval

For a random sample \(X_1, X_2, \ldots, X_n \) from \(N(\mu, \sigma^2) \). We have:

\[
T = \frac{\bar{X} - \mu}{s / \sqrt{n}} \sim t_{n-1}
\]

for a given \(\alpha \):

\[
P \left(-t_{\alpha/2, n-1} < \frac{\bar{X} - \mu}{s / \sqrt{n}} < -t_{\alpha/2, n-1} \right) = 1 - \alpha
\]

Solve the inequality for \(\mu \), we get the \((1 - \alpha)100\%\) C.I. for \(\mu \).

Proposition. Let \(\bar{x} \) and \(s \) be the sample mean and sample standard deviation computed from a random sample from a normal population with unknown \(\mu \) and \(\sigma \). Then the \((1 - \alpha)100\%\) C.I. for \(\mu \) is:

\[
\left(\bar{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}, \bar{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} \right)
\]

Compare to the \((1 - \alpha)100\%\) C.I. for normal mean \(\mu \) when \(\sigma \) is known:

\[
\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right)
\]

Example 7.4.4 A random sample of size 10 from a normal population yields:

2,3,1,6,5,7,10,4,9,8. Find the 95\% C.I. for the normal mean \(\mu \).

\[
\left(\bar{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}, \bar{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} \right)
\]

so the 95\% C.I. is:

Meaning?

More Intervals on Normal Populations

- Prediction interval (P.I.) for a single observation
- Examples
- C.I. for variance \(\sigma^2 \) and standard deviation \(\sigma \)
- Examples
Prediction Interval for a Single Obs

In many applications, we wish to predict a single value of a variable using a given sample. Suppose we have a random sample from a normal population X_1, \cdots, X_n. Now we wish to predict the value of X_{n+1}, a single future observation. We need a new rv:

$$T = \frac{\bar{X} - X_{n+1}}{S\sqrt{\frac{1}{n}}}$$

It can be shown that: $T \sim t_{n-1}$. By solving the inequality for X_{n+1} below:

$$P \left(-t_{\alpha/2, n-1} < \frac{\bar{X} - X_{n+1}}{S\sqrt{\frac{1}{n}}} < t_{\alpha/2, n-1} \right) = 1 - \alpha,$$

we can find the $(1 - \alpha)100\%$ P.I.

Prediction Interval for a Single Obs

Proposition. A P.I. for a single observation to be selected from a normal population distribution is

$$\bar{x} \pm t_{\alpha/2, n-1} \cdot s\sqrt{\frac{1}{n}}$$

The prediction level is $(1 - \alpha)100\%$.

Interpretation Similar to the C.I.: we are $(1 - \alpha)100\%$ sure that a future obs will fall in the P.I. Or, when the P.I. is calculated sample after sample, in the long run, 95% will include the true value of the future obs.

Example 7.5.1

Example 7.5.1 A random sample of size 10 from a normal population yields: $\bar{x} = 21.90$, $s = 4.134$, given $t_{0.025,9} = 2.262$, find:

- 95% C.I. for the normal mean μ, how do you interpret the C.I.?

- 95% P.I. for a single future value, how do you interpret the P.I.?
7.3 C.I.s for Variance and Standard Deviation

C.I.s for Variance and Standard Deviation of a Normal

Given a sample from a normal population, want to estimate the C.I. of the variance σ^2 or std dev σ. Need a new distribution: χ^2.

Theorem 4. Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution with parameters μ and σ^2. Then the rv:

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum(X_i - \bar{X})^2}{\sigma^2}$$

has a χ^2 distribution with $(n-1)$ df. Denoted by χ^2_{n-1}.

χ^2 Distribution

χ^2 Distributions and $\chi^2_{\alpha,\nu}$ Notation

χ^2 curves

- A group of positive distributions: $x \geq 0$. Not symmetric.
- Each has a positive skew with long upper tail.
- Different df ν has different density shape, and density curve becomes more symmetric when ν increases.

$\chi^2_{\alpha,\nu}$ Notation

- $\chi^2_{\alpha,\nu}$ is called a χ^2 critical value, denote the number on the measurement axis such that α of the area under the χ^2 curve with ν degrees of freedom lies to the right of $\chi^2_{\alpha,\nu}$.
- $\chi^2_{\alpha,\nu}$ values are tabulated.

Examples

- **Example 7.5.1** Find $\chi^2_{0.1,12}$, $\chi^2_{0.05,15}$, $\chi^2_{0.95,15}$.
- **Example 7.5.2** Determine the following
 - The 95% percentile of the χ^2 dist with df $\nu = 15$.

Purdue University Chapter7\print.tex; Last Modified: March 23, 2014 (W. Sharabati)
• Example 7.5.3 For a random sample of size n from a normal population with variance σ^2. What is:

$$P\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} < \frac{\sigma^2}{\chi^2_{1-\alpha/2,n-1}}\right)$$

C.I. for σ^2 and σ

$$P\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} < \frac{\sigma^2}{\chi^2_{1-\alpha/2,n-1}}\right) = 1 - \alpha$$

Solve the inequality for σ^2, we get:

$$\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$$

So:

Proposition. A $(1 - \alpha)100\%$ C.I. for variance σ^2 of a normal population is:

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}\right)$$

A $(1 - \alpha)100\%$ C.I. for std dev σ is then:

$$\left(\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}}, \sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}}\right)$$

Example 7.5.4 A random sample from a normal population of size 10 yields: 2,3,1,6,5,7,10,4,9,8. Find the 95% C.I. for the normal variance σ^2 and std dev σ.

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}\right)$$

95% C.I. $\Rightarrow \alpha = 0.05$, sample size $n = 10$ \Rightarrow df = 9, $\chi^2_{0.025,9} = 19.022$, $\chi^2_{0.975,9} = 2.700$.

$$s^2 = \frac{2^2 + 3^2 + \cdots + 8^2 - (2+3+\cdots+8)^2}{10-1} = 9.167$$

95% C.I. for σ^2

95% C.I. for σ is then: