1. Consider the following data set that describes the relationship between “velocity” of an enzymatic reaction (V) and the substrate concentration (C).

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>76</td>
</tr>
<tr>
<td>0.02</td>
<td>47</td>
</tr>
<tr>
<td>0.06</td>
<td>97</td>
</tr>
<tr>
<td>0.06</td>
<td>107</td>
</tr>
<tr>
<td>0.11</td>
<td>123</td>
</tr>
<tr>
<td>0.11</td>
<td>139</td>
</tr>
<tr>
<td>0.22</td>
<td>159</td>
</tr>
<tr>
<td>0.22</td>
<td>152</td>
</tr>
<tr>
<td>0.56</td>
<td>191</td>
</tr>
<tr>
<td>0.56</td>
<td>201</td>
</tr>
<tr>
<td>1.10</td>
<td>207</td>
</tr>
<tr>
<td>1.10</td>
<td>200</td>
</tr>
</tbody>
</table>

A common model used to describe the relationship between “velocity” and concentration is the Michaelis-Menten model

$$V = \frac{\theta_1 C}{\theta_2 + C}$$

where θ_1 is the maximum velocity of the reaction and θ_2 describes how quickly (in terms of increasing concentration) the reaction will reach maximum velocity. With this model, $1/V$ can be written as a linear model with explanatory variable $1/C$.

$$\frac{1}{V} = \frac{1}{\theta_1} + \frac{\theta_2}{\theta_1} \left(\frac{1}{1/C} \right) = \beta_0 + \beta_1 \left(\frac{1}{C} \right)$$

You are asked to investigate whether this linear transformation results in a good or poor fit by doing the following steps:

a. Generate a scatterplot of V vs C. Comment on the shape.

b. Define new variables for $1/V$ and $1/C$ in SAS and generate a scatterplot. These new variables can be defined as follows:

```sas
DATA NEW;
  INPUT c v;
  vinv = 1/v;
  cinv = 1/c;
  CARDS;
  [PUT DATA HERE]
;
```
Does the fit appear linear? Does there appear to be any violation of assumptions?
c. Is the distribution of $1/C$ different than C? Are there any points that may be
more influential in determining the fit?
d. Determine the least squares regression line for $1/V$ vs $1/C$. Save the residuals
and predicted values. Does the residual plot suggest any problems?
e. Convert this regression line back into the original nonlinear model and plot the
predicted curve on a scatterplot of V vs C. Comment on the fit. To generate the
predicted curve, simply take the predicted values from the regression model and
“re-inverse” them. For example, consider new1 to be the data set containing the
residuals and predicted values.

```
DATA new1;
    SET new1;
    pred1 = 1/pred;

SYMBOL1 V=CIRCLE I=NONE C=BLACK;
SYMBOL2 V=PLUS I=SM5 C=BLACK;
PROC GPLOT;
    PLOT v*c=1 pred1*c=2 / OVERLAY;
RUN;
```

2. KNNL Problem 4.12. This can be done in SAS or by hand. To fit a model with no
intercept in SAS, you need to add the NOINT option on MODEL statement line.

3. KNNL Problem 4.21

4. KNNL Problem 4.25

5. KNNL Problem 6.2

6. (SAS Exercise) Use the brand preference data described in KNNL Problem 6.5. Run
the linear regression with moisture and sweetness of the product as the explanatory
variables and degree of liking as the response variable.

 a. Summarize the regression results by giving the fitted regression equation, the
 value of R^2.

 b. State the results of the significance test for the null hypothesis that the two
 regression coefficients for the explanatory variables are all zero (give null and
 alternative hypotheses, test statistic with degrees of freedom, p-value, and a brief
 conclusion in words).

 c. Describe the results of the hypothesis tests for the individual regression coefficients
 (give null and alternative hypotheses, test statistic with degrees of freedom, p-
 value, and a brief conclusion in words).

 d. Give separate 95% confidence intervals for the regression coefficients of sweetness
 and moisture. What is the relationship between these confidence intervals and
 the above hypothesis results?