Problem 1 (9.4 from McDonald)

\[X_{\theta 1} = 0.95 \quad r_{\theta} = 0.04 \quad r_{\phi} = 0.06 \quad K = 0.93 \quad T = 1 \]

\[C^\phi_f(0.93, 1) = 0.0571 \]

\[C^\phi_f(0.93, 1) - P^\phi_f(0.93, 1) = X_{\theta 1} (0) e^{-K_\theta T} - K e^{-K_\phi T} \]

\[\Rightarrow 0.0571 - P^\phi_f(0.93, 1) = 0.95 e^{-0.04} - 0.93 e^{-0.06} \Rightarrow P^\phi_f(0.93, 1) = 0.0202 \]

Problem 2.

\[r_{\phi} = 0.05 \quad r_{\theta} = 0.01 \quad X_0 = 0.00941 \]

\[C^\phi_f(0.009, 1) = 0.0006 = X_{\theta 1} \cdot 0.009 \cdot P^\phi_f\left(\frac{1}{0.009}, 1\right) \]

\[\Rightarrow 0.0006 = 0.009 \cdot 0.009 \cdot P^\phi_f\left(\frac{1}{0.009}, 1\right) \Rightarrow P^\phi_f\left(\frac{1}{0.009}, 1\right) = \frac{0.0006}{0.00081} = 7.407 \]

\[C^\phi_f\left(\frac{1}{0.009}, 1\right) = 7.407 = \frac{1}{0.09} e^{-0.05} - \frac{1}{0.09} e^{-0.01} \]

\[\Rightarrow C^\phi_f\left(\frac{1}{0.09}, 1\right) = \frac{3.09403}{0.09} \]

Problem 3

Given: \[X_0 = 110 \% \quad r_{\phi} = 2\% \quad r_{\theta} = 4\% \]

\[C^\phi_f(K, 1) = 3 \quad P^\phi_f(K, 1) = 2 \]

\[(a) \quad C^\phi_f(K, 1) - P^\phi_f(K, 1) = X_0 e^{-K_\theta T} - K e^{-K_\phi T} \]

\[\Rightarrow 3 - 2 = 110 e^{-0.04} - K e^{-0.02} \Rightarrow K = 106.80165 \% \]

\[(b) \quad C^\phi_f(K, 1) = X_{\theta 1} (0) \cdot K \cdot P^\phi_f(K, 1) \]

\[\Rightarrow P^\phi_f(K, 1) = \frac{3}{110 \cdot (106.80165)} = 0.002555395 \% \]
Problem 4

\[\text{Given } S_r(0) = 100 \quad \text{(No Div)} \quad S_t(0) = 100 \]
\[C(S_r, S_t) = 15 \quad \tau = 5\% \quad P(S_r, S_t) = ? \]
\[C(S_r, S_t) - P(S_r, S_t) = S_r(0) - [S_t(0) - PV(DIV)] \]
\[\Rightarrow 15 - P(S_r, S_t) = 100 - [100 - (2e^{-0.06 \cdot 0.5} + 2e^{-0.06 \cdot 0.25} + 2e^{-0.06 \cdot 0.125} + 2e^{-0.06 \cdot 0.0625})] \]
\[\Rightarrow P(S_r, S_t) = 7.213 \]

Problem 5.

\[\text{Given } S_r(0) = 180 \quad S_t(0) = 90 \quad \tau = 0.06 \]
\[\text{DIV for } R: \quad \begin{array}{c|cccc}
0 & 2 & 5 & 8 & 11 \\
\hline
3 & 6 & 9 & 12 & \\
\end{array} \]
\[\text{DIV for } T: \quad \begin{array}{c|cccc}
0 & 4 & 7 & 10 & 13 \\
\hline
6 & 9 & 12 & 15 & \\
\end{array} \]
\[C(x_{ST}, S_r, x) = 4.6 \quad C(S_r, x_{ST}, x) = 7.04 = P(x_{ST}, S_r, x) \]
\[\Rightarrow C(x_{ST}, S_r, x) - P(x_{ST}, S_r, x) = x(S_t(0) - PV(DIV_T)) - [S_r(0) - PV(DIV_R)] \]
\[PV(DIV_T) = 1 \left(e^{-0.06 \cdot 0.75} + e^{-0.06 \cdot 0.45} \right) = 1.97521 \]
\[PV(DIV_R) = 2 \left(e^{-0.06 \cdot 1.5} + e^{-0.06 \cdot 0.9} \right) = 5.91084 \]
\[\Rightarrow 4.6 - 7.04 = x(90 - 1.97521) - (180 - 5.91084) \]
\[\Rightarrow x = 1.95 \]
\[\Rightarrow P(S_r, x_{ST}, x) = C(x_{ST}, S_r, x) = 4.6 \]
\[\Rightarrow C(x_{ST}, S_r, x) = \frac{1}{1.95} \cdot 7.04 = 3.6102 \]
Problem 6.

Solution. We need to check the no-arbitrage properties of directionality and maximal difference.

Call Premiums: We should check the property

\[0 \leq C(50, T) - C(55, T) \leq 55 - 50, \]

which is clearly satisfied in this case. However, since \(C(50, T) < C(55, T) \), the directionality property fails. The inequality \(C(50, T) < C(55, T) \) also suggests that the 50-strike call is underpriced (hence, we should buy it) and the 55-strike call is overpriced (so, we should sell it). The following table illustrates the arbitrage (below, \(\tau \) represents the expiration time \(T \) if the options in the problem were European options or the exercise time of the 55-strike call if they were American style options).

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Cash flow at (t = 0)</th>
<th>Cash flow at (\tau) if (S_\tau \leq 50)</th>
<th>Cash flow at (\tau) if (50 < S_\tau \leq 55)</th>
<th>Cash flow at (\tau) if (S_\tau > 55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy the 50-strike call</td>
<td>-9</td>
<td>0</td>
<td>(S_\tau - 50)</td>
<td>(S_\tau - 50)</td>
</tr>
<tr>
<td>Sell the 55-strike call</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>(-(S_\tau - 55))</td>
</tr>
<tr>
<td>Buy Treasuries</td>
<td>-1</td>
<td>(e^{r\tau})</td>
<td>(e^{r\tau})</td>
<td>(e^{r\tau})</td>
</tr>
<tr>
<td>Profit/Loss</td>
<td>0</td>
<td>(e^{r\tau} > 0)</td>
<td>(e^{r\tau} + (S_\tau - 50) > 0)</td>
<td>(e^{r\tau} + 5 > 0)</td>
</tr>
</tbody>
</table>

Put Premiums: Clearly,

\[0 \leq P(55, T) - C(50, T) \leq 55 - 50, \]

and, thus, the maximal difference property is satisfied. But, given that \(P(55, T) < P(50, T) \), the direction property fails. Moreover, the inequality \(P(55, T) < P(50, T) \) suggests that the 55-strike put is underpriced (hence, we should buy it) and the 50-strike put is overpriced (so, we should sell it). The following table illustrates the arbitrage (as above, \(\tau \) below is the expiration time \(T \) in the case of European put options or the exercise time of the 50-strike put in the case of American put options).

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Cash flow at (t = 0)</th>
<th>Cash flow at (\tau) if (S_\tau < 50)</th>
<th>Cash flow at (\tau) if (50 \leq S_\tau < 55)</th>
<th>Cash flow at (\tau) if (55 \leq S_\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy the 55-strike put</td>
<td>-6</td>
<td>(55 - S_\tau)</td>
<td>(55 - S_\tau)</td>
<td>0</td>
</tr>
<tr>
<td>Sell the 50-strike put</td>
<td>7</td>
<td>(-(50 - S_\tau))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buy Treasuries</td>
<td>-1</td>
<td>(e^{r\tau})</td>
<td>(e^{r\tau})</td>
<td>(e^{r\tau})</td>
</tr>
<tr>
<td>Profit/Loss</td>
<td>0</td>
<td>(e^{r\tau} + 5 > 0)</td>
<td>(e^{r\tau} + (55 - S_\tau) > 0)</td>
<td>(e^{r\tau} > 0)</td>
</tr>
</tbody>
</table>