1. A plant distills liquid air to produce oxygen. The following data were used by this plant to assess the relationship between the **percentage of impurity in the oxygen (PERC)** with the **amount (ppm) of impurity in the liquid air (AMT)**. Use the attached SAS output at the end of the exam and the scatterplot below to answer the following questions.

![Scatterplot with line](image)

(a) **(3 pts)** What is the response variable?

PERC

(b) **(6 pts)** Write down the least squares regression line and describe the relationship between PERC and AMT.

\[
\text{PERC} = 96.454 - 2.9 \text{ AMT}
\]

Negative linear relationship with unit increase in AMT resulting in decrease of 2.9%
(c) (5 pts) What is the estimated error variance? What does this variance represent in terms of the estimated regression model?

\[\text{MSE} = .18297 \]

VARABILITY OF OBSERVATIONS ABOUT REG LINE

(d) (4 pts) Explain the difference between the residuals (RESIDUAL) and studentized residuals (STUDENT RESIDUAL) columns in the output.

\[\text{STUDENT} = \frac{\text{RESIDUAL}}{s(\text{RESIDUAL})} \]

(e) (3 pts) If the liquid air had a pollution count of 1.00, what is the predicted percentage of impurity in the oxygen?

\[96.454 - 2.9(1.00) = 93.554 \]

(f) (4 pts) If the observed percentage of impurity at 1.00 were 93.0, what is the residual value?

\[93.0 - 93.554 = -.554 \]

(g) (3 pts) Suppose you plan to construct a 95% prediction interval for impurity amounts of 1.30 and 1.50. Given the sample mean of AMT is 1.354, which amount would have a narrower interval and why?

1.3 since it is closer to 1.354
(h) (5 pts) What is the P-value and degrees of freedom for the test $H_0 : \beta_1 = 0$? What is the conclusion?

\[P\text{-value} < .0001 \quad df = 13 \]

\[\text{REJECT } H_0 \text{ : DATA SUPPORT } \beta_1 \neq 0 \]

(i) (6 pts) Construct a 95% confidence interval for β_1.

\[-2.9 \pm t(.975,13) \cdot 30557 \]

\[t(.975,13) = 2.16 \]

(j) (4 pts) What is the estimated Pearson correlation between PERC and AMT?

\[-\sqrt{.8739}\]

(k) (4 pts) The plant’s execs are concerned that the estimated intercept is not 100%. Explain why this should not be that much of a concern given this study.

\[\begin{align*}
\hat{\alpha} & = 96.45 \\
\text{AT } AMT = 0 \text{, PERC} & \geq 96.45 \\
\text{However, no data near } 0 \text{, AMT} = 0 \text{ is outside scope.}
\end{align*} \]
2. Short answer questions. Each part is unrelated.

(a) (3 pts) Suppose the estimated regression equation is \(\hat{Y} = 2 + 3X \). Give the estimated regression equation if the variable \(U = 3X + 6 \) were used in place of \(X \).

\[
X = \frac{U - 6}{3}
\]

\[
\hat{Y} = 2 + 3 \cdot \frac{U - 6}{3} = U - 4
\]

(b) (4 pts) Explain how a 95% confidence interval for the slope can be used to test \(H_0 : \beta_1 = 5 \) at the \(\alpha = .05 \) level?

LOOK TO SEE IF 5 IS IN INTERVAL
IF OUTSIDE REJECT \(H_0 \)

(c) (5 pts) Rob Poorman Auto Sales has decided to use \(R^2 \) to select the best model in predicting car demand based on several demographic variables. Explain when (and when not) this is a reasonable approach.

\(R^2 \) USED WHEN \(p \) IS FIXED

\(C_p, \) ADJUSTED \(R^2 \) USED WHEN \(p \) ARBITRARY
(d) (8 pts) For each of the following residual plots (e_i vs \hat{Y}), state which assumptions of the linear regression model (if any) appear violated.

- **Nonlinear**
 - Residuals show a clear upward trend, indicating a nonlinear relationship.

- **Outlier**
 - Residuals contain a point that is far from the others, indicating an outlier.

- **Good**
 - Residuals are randomly scattered around the horizontal line, indicating a linear relationship.

- **Non-constant Variance**
 - Residuals show a funnel-like shape, indicating non-constant variance (heteroscedasticity).
3. An experiment was performed to best predict the burn time of a tobacco leaf using the leaf percentages of nitrogen (X_1), chlorine (X_2), and potassium (X_3). Use the attached SAS output of the top 10 “best” models to answer the following questions.

(a) (4 pts) The log(burn time) was chosen as the response variable. Describe a possible reason for using this transformation of burn time?

NONLINEAR RELATIONSHIP BETWEEN Y & $X'S$

PERHAPS TO STABILIZE VARIANCE

(b) (4 pts) The full model contained all the **quadratic** terms and first-order interactions (e.g., X_1^2 and X_1X_2). Prior to analysis, the original variables were standardized. Why was this done?

MULTICOLLINEARITY OF PRESENT WHEN LOOKING AT POLYNOMIAL MODELS

(c) (4 pts) Write down the fitted regression line for the best model based on adjusted R^2.

$$Y = 0.46463 - 0.3009X_1 - 0.28385X_2 + 0.22094X_3 + 0.10558X_1^2$$

(d) (6 pts) Explain what this regression line tells you about the relationship between the percentages of the three elements and the burning time.

$\uparrow X_3 \rightarrow \uparrow Y \text{ by } 0.22094 \text{ units}$

$\uparrow X_1 \text{ 1 unit} \rightarrow \text{change } Y \text{ by } (-0.3009 + 0.10558X_2) \text{ units}$

SIMILAR FOR X_2

CHANGE NOT CONSTANT BECAUSE OF INTERACTION
(e) (4 pts) Are there any models in this list that are unacceptable based on C_p? Explain.

```
UNACCEPTABLE IF \[ C_p > p \]
```

YES 1 MODEL

\[
\frac{4.9242}{4} > 4
\]

(f) (6 pts) Describe a formal test (with degrees of freedom) that could be used to test whether this “best” model could be used in place of the full model with nine parameters.

Full model

- Model: 9
- Error: $n-10$
- Total: $n-1$

Reduced model

- Model: 4
- Error: $n-5$
- Total: $n-1$

\[
\frac{(SSE(R) - SSE(F))/5}{SSE(F)/(n-10)} = F^*
\]

Compare to $F(5, n-10)$
Results for Problem #1

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>16.49078</td>
<td>16.49078</td>
<td>90.13</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>2.37855</td>
<td>0.18297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>14</td>
<td>18.86933</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.42774
Dependent Mean 92.52667

Parameter Estimates

| Parameter | DF | Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----|----------|----------------|---------|-------|
| Intercept | 1 | 96.45456 | 0.42822 | 225.24 | <.0001|
| AMT | 1 | -2.90096 | 0.30557 | -9.49 | <.0001|

Output Statistics

<table>
<thead>
<tr>
<th>Obs</th>
<th>AMT</th>
<th>PERC</th>
<th>Value</th>
<th>Mean</th>
<th>Predict</th>
<th>Std Error</th>
<th>Residual</th>
<th>Std Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>93.3000</td>
<td>93.2635</td>
<td>0.1350</td>
<td>0.0365</td>
<td>0.406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.45</td>
<td>92.0000</td>
<td>92.2482</td>
<td>0.1143</td>
<td>-0.2482</td>
<td>0.412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.36</td>
<td>92.4000</td>
<td>92.5093</td>
<td>0.1105</td>
<td>-0.1093</td>
<td>0.413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.59</td>
<td>91.7000</td>
<td>91.8420</td>
<td>0.1319</td>
<td>-0.1420</td>
<td>0.407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.08</td>
<td>94.0000</td>
<td>93.3215</td>
<td>0.1386</td>
<td>0.6785</td>
<td>0.406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.75</td>
<td>94.6000</td>
<td>94.2788</td>
<td>0.2151</td>
<td>0.3212</td>
<td>0.370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.2</td>
<td>93.6000</td>
<td>92.9734</td>
<td>0.1201</td>
<td>0.6266</td>
<td>0.411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.99</td>
<td>93.1000</td>
<td>93.5826</td>
<td>0.1567</td>
<td>-0.4826</td>
<td>0.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.83</td>
<td>93.2000</td>
<td>94.0468</td>
<td>0.1945</td>
<td>-0.8468</td>
<td>0.381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.22</td>
<td>92.9000</td>
<td>92.9154</td>
<td>0.1178</td>
<td>-0.0154</td>
<td>0.411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.47</td>
<td>92.2000</td>
<td>92.1902</td>
<td>0.1160</td>
<td>0.009844</td>
<td>0.412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.81</td>
<td>91.3000</td>
<td>91.2038</td>
<td>0.1778</td>
<td>0.0962</td>
<td>0.389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.03</td>
<td>90.1000</td>
<td>90.5656</td>
<td>0.2342</td>
<td>-0.4656</td>
<td>0.358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.75</td>
<td>91.6000</td>
<td>91.3779</td>
<td>0.1638</td>
<td>0.2221</td>
<td>0.395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.68</td>
<td>91.9000</td>
<td>91.5810</td>
<td>0.1487</td>
<td>0.3190</td>
<td>0.401</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studentized Residuals and Cook's Distance

<table>
<thead>
<tr>
<th>Obs</th>
<th>AMT</th>
<th>Residual</th>
<th>-2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>0.0899</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>1.45</td>
<td>-0.602</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.014</td>
</tr>
<tr>
<td>3</td>
<td>1.36</td>
<td>-0.264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>4</td>
<td>1.59</td>
<td>-0.349</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.006</td>
</tr>
<tr>
<td>5</td>
<td>1.08</td>
<td>1.677</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.165</td>
</tr>
<tr>
<td>6</td>
<td>0.75</td>
<td>0.869</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.128</td>
</tr>
<tr>
<td>7</td>
<td>1.2</td>
<td>1.526</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.100</td>
</tr>
<tr>
<td>8</td>
<td>0.99</td>
<td>-1.213</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.114</td>
</tr>
<tr>
<td>9</td>
<td>0.83</td>
<td>-2.223</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.644</td>
</tr>
<tr>
<td>10</td>
<td>1.22</td>
<td>-0.0374</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>1.47</td>
<td>0.0239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>1.81</td>
<td>0.247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.006</td>
</tr>
<tr>
<td>13</td>
<td>2.03</td>
<td>-1.301</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.362</td>
</tr>
<tr>
<td>14</td>
<td>1.75</td>
<td>0.562</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.027</td>
</tr>
<tr>
<td>15</td>
<td>1.68</td>
<td>0.796</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.044</td>
</tr>
</tbody>
</table>
RESULTS FOR PROBLEM #3

<table>
<thead>
<tr>
<th>Model</th>
<th>C(p)</th>
<th>R-Square</th>
<th>R-Square</th>
<th>Adjusted R-Square</th>
<th>AIC</th>
<th>SBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.6559</td>
<td>0.8575</td>
<td>0.8348</td>
<td>-93.4815</td>
<td>-86.47553</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.2586</td>
<td>0.8602</td>
<td>0.8310</td>
<td>-92.0370</td>
<td>-83.62982</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.2996</td>
<td>0.8599</td>
<td>0.8307</td>
<td>-91.9792</td>
<td>-83.57202</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.3625</td>
<td>0.8595</td>
<td>0.8302</td>
<td>-91.8907</td>
<td>-83.48356</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.6017</td>
<td>0.8579</td>
<td>0.8283</td>
<td>-91.5567</td>
<td>-83.14963</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.6392</td>
<td>0.8577</td>
<td>0.8280</td>
<td>-91.5047</td>
<td>-83.09753</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.0757</td>
<td>0.8679</td>
<td>0.8335</td>
<td>-91.7545</td>
<td>-81.94613</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.9242</td>
<td>0.8229</td>
<td>0.8025</td>
<td>-88.9491</td>
<td>-83.34427</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.0568</td>
<td>0.8615</td>
<td>0.8254</td>
<td>-90.3231</td>
<td>-80.51470</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.0991</td>
<td>0.8612</td>
<td>0.8250</td>
<td>-90.2629</td>
<td>-80.45449</td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

<table>
<thead>
<tr>
<th>Model</th>
<th>C(p)</th>
<th>Intercept</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.6559</td>
<td>0.66463</td>
<td>-0.3009</td>
<td>-0.28385</td>
<td>0.22094</td>
</tr>
<tr>
<td>5</td>
<td>3.2586</td>
<td>0.67306</td>
<td>-0.29773</td>
<td>-0.28079</td>
<td>0.22434</td>
</tr>
<tr>
<td>5</td>
<td>3.2996</td>
<td>0.68651</td>
<td>-0.29838</td>
<td>-0.28029</td>
<td>0.22090</td>
</tr>
<tr>
<td>5</td>
<td>3.3625</td>
<td>0.64495</td>
<td>-0.29958</td>
<td>-0.30527</td>
<td>0.22461</td>
</tr>
<tr>
<td>5</td>
<td>3.6017</td>
<td>0.65608</td>
<td>-0.30359</td>
<td>-0.28188</td>
<td>0.21940</td>
</tr>
<tr>
<td>5</td>
<td>3.6392</td>
<td>0.66464</td>
<td>-0.30140</td>
<td>-0.28349</td>
<td>0.22062</td>
</tr>
<tr>
<td>6</td>
<td>4.0757</td>
<td>0.63515</td>
<td>-0.29371</td>
<td>-0.32928</td>
<td>0.23731</td>
</tr>
<tr>
<td>3</td>
<td>4.9242</td>
<td>0.68600</td>
<td>-0.30966</td>
<td>-0.26606</td>
<td>0.22320</td>
</tr>
<tr>
<td>6</td>
<td>5.0568</td>
<td>0.66701</td>
<td>-0.29804</td>
<td>-0.30010</td>
<td>0.22425</td>
</tr>
<tr>
<td>6</td>
<td>5.0991</td>
<td>0.67530</td>
<td>-0.30148</td>
<td>-0.27879</td>
<td>0.22384</td>
</tr>
</tbody>
</table>

Parameter Estimates

<table>
<thead>
<tr>
<th>Model</th>
<th>C(p)</th>
<th>x11</th>
<th>x22</th>
<th>x33</th>
<th>x12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.6559</td>
<td></td>
<td></td>
<td></td>
<td>0.10558</td>
</tr>
<tr>
<td>5</td>
<td>3.2586</td>
<td></td>
<td></td>
<td></td>
<td>0.12202</td>
</tr>
<tr>
<td>5</td>
<td>3.2996</td>
<td></td>
<td></td>
<td>-0.02412</td>
<td>0.11266</td>
</tr>
<tr>
<td>5</td>
<td>3.3625</td>
<td></td>
<td>0.02137</td>
<td></td>
<td>0.10073</td>
</tr>
<tr>
<td>5</td>
<td>3.6017</td>
<td>0.00844</td>
<td></td>
<td></td>
<td>0.10455</td>
</tr>
<tr>
<td>5</td>
<td>3.6392</td>
<td></td>
<td></td>
<td></td>
<td>0.10200</td>
</tr>
<tr>
<td>6</td>
<td>4.0757</td>
<td></td>
<td>0.05199</td>
<td></td>
<td>0.12965</td>
</tr>
<tr>
<td>3</td>
<td>4.9242</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.0568</td>
<td></td>
<td>0.01951</td>
<td>-0.02242</td>
<td>0.10774</td>
</tr>
<tr>
<td>6</td>
<td>5.0991</td>
<td></td>
<td></td>
<td></td>
<td>0.11437</td>
</tr>
</tbody>
</table>

Parameter Estimates

<table>
<thead>
<tr>
<th>Model</th>
<th>C(p)</th>
<th>x13</th>
<th>x23</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.6559</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.2586</td>
<td></td>
<td>-0.02987</td>
</tr>
<tr>
<td>5</td>
<td>3.2996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.3625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.6017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.6392</td>
<td>0.00797</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.0757</td>
<td></td>
<td>-0.06514</td>
</tr>
<tr>
<td>3</td>
<td>4.9242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.0568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.0991</td>
<td>0.02660</td>
<td>-0.03766</td>
</tr>
</tbody>
</table>