Chapter 7
General Linear Test and Multicollinearity

Professor Dabao Zhang
General Linear Test

- Comparison of a **full** model and **reduced** model that involves a subset of full model predictors (i.e., hierarchical structure)

- Involves a comparison of unexplained SS

- Consider a full model with k predictors and reduced model with l predictors ($l < k$)

- Can show that

$$F^* = \frac{(SSE(R) - SSE(F))/(k - l)}{SSE(F)/(n - k - 1)}$$

- Degrees of freedom for F^* are the number of **extra** variables and the error degrees of freedom for the larger model
• Testing the Null hypothesis that the regression coefficients for the \textbf{extra} variables are all zero.

• Examples:
 - $X_1, X_2, X_3, X_4 \text{ vs } X_1, X_2 \rightarrow H_0 : \beta_3 = \beta_4 = 0$
 - $X_1, X_2, X_4 \text{ vs } X_1 \rightarrow H_0 : \beta_2 = \beta_4 = 0$
 - $X_1, X_2, X_3, X_4 \text{ vs } X_1 \rightarrow H_0 : \beta_2 = \beta_3 = \beta_4 = 0$

• Because $SSM + SSE = SSTO$, can also compare using explained SS (SSM)
Extra SS and Notation

- Consider $H_0 : X_1, X_3$ vs $H_a : X_1, X_2, X_3, X_4$
- Null can also be written $H_0 : \beta_2 = \beta_4 = 0$
- Write $SSE(F)$ as $SSE(X_1, X_2, X_3, X_4)$
- Write $SSE(R)$ as $SSE(X_1, X_3)$
- Difference in SSE’s is the extra SS
- Write as
 \[
 SSE(X_2, X_4|X_1, X_3) = SSE(X_1, X_3) - SSE(X_1, X_2, X_3, X_4)
 \]
- Recall SSM can also be used
 \[
 SSM(X_2, X_4|X_1, X_3) = SSM(X_1, X_2, X_3, X_4) - SSM(X_1, X_3) \implies
 SSM(X_1, X_2, X_3, X_4) = SSM(X_1, X_3) + SSM(X_2, X_4|X_1, X_3)
 \]
General Linear Test in Terms of Extra SS

- Can rewrite F test as
 \[F^* = \frac{\text{SSE}(X_2, X_4|X_1, X_3)/(4-2)}{\text{SSE}(X_1, X_2, X_3, X_4)/(n-5)} \]

- Under \(H_0 \), \(F^* \sim F(2, n-5) \)

- If reject, conclude either \(X_2 \) or \(X_4 \) or both contain additional useful information to predict \(Y \) in a linear model with \(X_1 \) and \(X_3 \)

- Example: Consider predicting GPA with HS grades, do SAT scores add any useful information?
Special Cases

- Consider testing individual predictor X_i based on
 \[\text{SSE}(X_i|X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{p-1}) \]
 - These are related to SAS’s indiv parameter t-tests
 \[F(1, n - p) = t^2(n - p) \]

- Can decompose SSM variety of ways
 - Decomposition of $\text{SSM}(X_1, X_2, X_3)$
 \[\begin{align*}
 &= \text{SSM}(X_1) + \text{SSM}(X_2|X_1) + \text{SSM}(X_3|X_2, X_1) \\
 &= \text{SSM}(X_2) + \text{SSM}(X_1|X_2) + \text{SSM}(X_3|X_2, X_1) \\
 &= \text{SSM}(X_3) + \text{SSM}(X_2|X_3) + \text{SSM}(X_1|X_2, X_3)
 \end{align*} \]
 - Stepwise sum of squares called Type I SS
Type I SS and Type II SS

- Type I and Type II are very different
 - Type I is sequential, so it depends on model statement
 - Type II is conditional on all others, so it does not depend on model statement

- For example,

<table>
<thead>
<tr>
<th>Type I</th>
<th>Type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM(X_1)</td>
<td>SSM($X_1</td>
</tr>
<tr>
<td>SSM($X_2</td>
<td>X_1$)</td>
</tr>
<tr>
<td>SSM($X_3</td>
<td>X_1, X_2$)</td>
</tr>
</tbody>
</table>

- Could variables be explaining same SS and “canceling” each other out?

- Look at other models / general linear test
Example: Body Fat (p.256)

- Twenty healthy female subjects
- Y is body fat via underwater weighing
- Underwater weighing is expensive/difficult
- X_1 is triceps skinfold thickness
- X_2 is thigh circumference
- X_3 is midarm circumference
Investigate the model with all three predictors:

```
data a1;
  infile 'U:\Ch07ta01.txt';
  input skinfold thigh midarm fat;
procr eg data=a1;
  model fat=skinfold thigh midarm /ss1 ss2;
run;
```

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>396.98461</td>
<td>132.32820</td>
<td>21.52</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>16</td>
<td>98.40489</td>
<td>6.15031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>19</td>
<td>495.38950</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 2.47998
R-Square: 0.8014
Dependent Mean: 20.19500
Adj R-Sq: 0.7641
Coeff Var: 12.28017

Parameter Estimates

| Variable | DF | Estimate | Error | t Value | Pr > |t| |
|----------|----|----------|-------|---------|-------|
| Intercept| 1 | 117.08469| 99.78240| 1.17 | 0.2578|
| skinfold | 1 | 4.33409 | 3.01551| 1.44 | 0.1699|
| thigh | 1 | -2.85685 | 2.58202| -1.11 | 0.2849|
| midarm | 1 | -2.18606 | 1.59550| -1.37 | 0.1896|
Conclusions

• Set of three variables helpful in predicting body fat \((P < 0.0001) \)

• None of the individual parameters is significant
 – Addition of each predictor to a model containing the other two is not helpful
 – Example of \textit{multicollinearity}
 – Will discuss more in next topic

• Will now focus on extra SS
Output Using SS1 & SS2

Parameter Estimates

<table>
<thead>
<tr>
<th>Variable</th>
<th>DF</th>
<th>Estimate</th>
<th>Type I SS</th>
<th>Type II SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>117.08469</td>
<td>8156.76050</td>
<td>8.46816</td>
</tr>
<tr>
<td>skinfold</td>
<td>1</td>
<td>4.33409</td>
<td>352.26980</td>
<td>12.70489</td>
</tr>
<tr>
<td>thigh</td>
<td>1</td>
<td>-2.85685</td>
<td>33.16891</td>
<td>7.52928</td>
</tr>
<tr>
<td>midarm</td>
<td>1</td>
<td>-2.18606</td>
<td>11.54590</td>
<td>11.54590</td>
</tr>
</tbody>
</table>
Investigate the model: \(\text{fat} = \text{skinfold} \)

```sas
proc reg data=a1;
   model fat=skinfold;
run;
```

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>352.26980</td>
<td>352.26980</td>
<td>44.30</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>18</td>
<td>143.11970</td>
<td>7.95109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>19</td>
<td>495.38950</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 2.81977 R-Square: 0.7111
Dependent Mean: 20.19500 Adj R-Sq: 0.6950
Coeff Var: 13.96271

Parameter Estimates

| Variable | DF | Estimate | Error | t Value | Pr > |t| |
|------------|----|----------|-------|---------|------|---|
| Intercept | 1 | -1.49610 | 3.31923 | -0.45 | 0.6576 |
| skinfold | 1 | 0.85719 | 0.12878 | 6.66 | <.0001 |

Skinfold now helpful. Note the change in coefficient estimate and standard error compared to the full model.
• Does this variable alone do the job?

• Perform general linear test

```plaintext
proc reg data=a1;
   model fat=skinfold thigh midarm;
   thimid: test thigh, midarm;
run; quit;
```

Test thimid Results for Dependent Variable fat

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator</td>
<td>2</td>
<td>22.35741</td>
<td>3.64</td>
<td>0.0500</td>
</tr>
<tr>
<td>Denominator</td>
<td>16</td>
<td>6.15031</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Appears there is additional information in the variables. Perhaps the addition of one more variable would be helpful.
Partial Correlations

- Measures the strength of a linear relation between two variables taking into account other variables or after adjusting for other variables

- Procedure for X_i vs Y
 - Predict Y using other X’s
 - Predict X_i using other X’s
 - Find correlation between residuals

- Each residual represents what is not explained by the other variables

- Looking for additional information in X_i that better explains Y
Example: Body Fat

proc reg data=a1;
 model fat=skinfold thigh midarm / pcorr2;
run;

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| | Corr | Type II |
|----------|----|--------------------|----------------|---------|-------|-----|--------|---------|
| Intercept| 1 | 117.08469 | 99.78240 | 1.17 | 0.2578| . | | |
| skinfold | 1 | 4.33409 | 3.01551 | 1.44 | 0.1699| 0.11435| | |
| thigh | 1 | -2.85685 | 2.58202 | -1.11 | 0.2849| 0.07108| | |
| midarm | 1 | -2.18606 | 1.59550 | -1.37 | 0.1896| 0.10501| | |

- Squared partial correlation is also called coefficient of partial determination. Has similar interpretation to coefficient of multiple determination.
- In this case, variables only explain approximately 10% of the remaining variation after the other two variables are fit.
Standardized Regression Model

- Can reduce round-off errors in calculations
- Standardization
 \[\tilde{Y}_i = \frac{1}{\sqrt{n-1}} \left(\frac{Y_i - \bar{Y}}{s_Y} \right) \quad \text{and} \quad \tilde{X}_{ik} = \frac{1}{\sqrt{n-1}} \left(\frac{X_{ik} - \bar{X}_i}{s_{X_i}} \right) \]
- Puts regression coefficients in common units
- A one SD change in \(X_i \) corresponds to \(\tilde{\beta}_i \) SD increase in \(Y \)
- Can show
 \[\beta_i = \left(\frac{s_Y}{s_{X_i}} \right) \tilde{\beta}_i \]
Example: Body Fat

```
proc reg data=a1;
  model fat=skinfold thigh midarm / stb;
run;
```

Parameter Estimates

| Variable | DF | Parameter | Standard Error | t Value | Pr > |t| | Standardized Estimate |
|-------------|----|-----------|----------------|---------|------|--------|-----------------------|
| Intercept | 1 | 117.08469 | 99.78240 | 1.17 | 0.2578 | 0 | 0 |
| skinfold | 1 | 4.33409 | 3.01551 | 1.44 | 0.1699 | 4.26370 |
| thigh | 1 | -2.85685 | 2.58202 | -1.11 | 0.2849 | -2.92870 |
| midarm | 1 | -2.18606 | 1.59550 | -1.37 | 0.1896 | -1.56142 |

Skinfold has highest standardized coefficient. Midarm does not appear to be as important a predictor. Perhaps best model includes skinfold and thigh.
Multicollinearity

• Numerical analysis problem is that the matrix $X'X$ is almost singular (linear dependent columns)
 – Makes it difficult to take the inverse
 – Generally handled with current algorithms

• Statistical problem: too much correlation among predictors
 – Difficult to determine regression coefficients \rightarrow Increased variance

• Want to refine model to remove redundancy in the predictors
Example

- Consider a two predictor model

\[Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i \]

- What is the estimate of \(\beta_1 \)?

- Can show

\[b_1 = \frac{\tilde{b}_1 - \sqrt{\frac{s_Y^2}{s_{X1}^2} r_{12} r_{Y2}}}{1 - r_{12}^2} \]

where \(\tilde{b}_1 \) is the estimate fitting \(Y \) vs \(X_1 \)
Extreme Cases

- Consider X_1 and X_2 are uncorrelated
 - $r_{12} = 0$
 - $b_1 = \tilde{b}_1$ (fitting Y vs X_1)
 - Estimator b_1 does not depend on X_2
 - Type I SS and Type II SS are the same
 - In other words, the contribution of each predictor is the same regardless of whether or not the other predictor is in the model

- Consider $X_1 = a + bX_2$
 - $r_{12} = \pm 1$
 - Estimator b_1 does not exist
 - Type II SS are zero
 - In other words, there is no contribution of the predictor if the other predictor is already in the model
Extreme Case in SAS

- Consider the following data set

```sas
data a1;
input case x1 x2 y @@
cards;
  1  3  3  5
  2  4  5  8
  3  1 -1  7
  4  6  9 15
;
```

- Notice $x_2 = 2x_1 - 3$

- Will generate 3-D plot and run regression
/* Generate 3-D Scatterplot */
proc g3d data=a1;
 scatter x2*x1=y / rotate=30;
run;
proc reg data=a1;
 model y=x2 x1;
run; quit;

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>55.59211</td>
<td>55.59211</td>
<td>96.02</td>
<td>0.0103</td>
</tr>
<tr>
<td>Error</td>
<td>2</td>
<td>1.15789</td>
<td>0.57895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>3</td>
<td>56.75000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.76089 R-Square: 0.9796
Dependent Mean: 8.75000 Adj R-Sq: 0.9694
Coeff Var: 8.69584

NOTE: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported DF of 0 or B means that the estimate is biased.

NOTE: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

\[x_1 = 1.5 \times \text{Intercept} + 0.5 \times x_2 \]

Parameter Estimates

| Variable | DF | Estimate | Error | t Value | Pr > |t| |
|-----------|-----|----------|---------|---------|------|---|
| Intercept | B | -0.65789 | 1.03271 | -0.64 | 0.5893 |
| x2 | B | 1.71053 | 0.17456 | 9.80 | 0.0103 |
| x1 | 0 | 0 | | | |
• In this example, no inverse exists so X_1 dropped
• In practice, we are concerned with less extremal cases
• General results still hold
 – Regression coefficients are not well estimated
 – Regression coefficients may be meaningless
 – Type I SS and II SS will differ substantially
 – R^2 and predicted values are usually ok
Pairwise Correlations

- Assesses “pairwise collinearity” but not complicated multi-collinearity

- Consider our body fat example

```plaintext
proc reg data=a1 corr;
    model midarm = skinfold thigh;
run; quit;
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>skinfold</th>
<th>thigh</th>
<th>midarm</th>
<th>fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>skinfold</td>
<td>1.0000</td>
<td>0.9238</td>
<td>0.4578</td>
<td>0.8433</td>
</tr>
<tr>
<td>thigh</td>
<td>0.9238</td>
<td>1.0000</td>
<td>0.0847</td>
<td>0.8781</td>
</tr>
<tr>
<td>midarm</td>
<td>0.4578</td>
<td>0.0847</td>
<td>1.0000</td>
<td>0.1424</td>
</tr>
<tr>
<td>fat</td>
<td>0.8433</td>
<td>0.8781</td>
<td>0.1424</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

- None of these are too troublesome

- “MODEL midarm = skinfold thigh” reported $R^2 = 0.9904$

 - All three $\rightarrow r = \sqrt{0.9904} = .995$

 - Should not use model with all three predictors
Page 284 summarizes coefficients

<table>
<thead>
<tr>
<th>Variables in Model</th>
<th>b_1</th>
<th>b_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>skinfold</td>
<td>0.8572</td>
<td>-</td>
</tr>
<tr>
<td>thigh</td>
<td>-</td>
<td>0.8565</td>
</tr>
<tr>
<td>skinfold, thigh</td>
<td>0.2224</td>
<td>0.6594</td>
</tr>
<tr>
<td>skinfold, thigh, midarm</td>
<td>4.3340</td>
<td>-2.857</td>
</tr>
</tbody>
</table>

- skinfold and thigh similar info

- Coeffs change when both are included (sum ≈ 0.86)

- Very dramatic change when midarm is in

- Reflected in std errors too
Chapter Review

* Extra Sums of Squares

* Partial correlations

* Standardized regression coefficients

* Multicollinearity
 - Effects
 - Remedies