Lecture 4. Checking Model Assumptions: Diagnostics and Remedies

Montgomery: 3-4, 15-1.1
Model Assumptions

- Model Assumptions
 1. Model is correct
 2. Independent observations
 3. Errors normally distributed
 4. Constant variance

\[
y_{ij} = (\bar{y}_j + (\bar{y}_i - \bar{y}_.)) + (y_{ij} - \bar{y}_i)
\]

\[
y_{ij} = \hat{y}_{ij} + \hat{\epsilon}_{ij}
\]

- Note that the predicted response at treatment \(i \) is \(\hat{y}_{ij} = \bar{y}_i \).

- Diagnostics use predicted responses and residuals.
Diagnostics

• Normality
 – Histogram of residuals
 – Normal probability plot / QQ plot (refer to Lecture 3)
 – Shapiro-Wilk Test (refer to Lecture 3)

• Constant Variance
 – Plot \(\hat{\epsilon}_{ij} \) vs \(\hat{y}_{ij} \) (residual plot)
 – Bartlett’s or Levene’s Test

• Independence
 – Plot \(\hat{\epsilon}_{ij} \) vs time/space (refer to Lecture 3)
 – Plot \(\hat{\epsilon}_{ij} \) vs variable of interest

• Outliers
Constant Variance

- In some experiments, error variance \((\sigma_i^2) \) depends on the mean response

\[
E(y_{ij}) = \mu_i = \mu + \tau_i.
\]

So the constant variance assumption is violated.

- Size of error (residual) depends on mean response (predicted value)

- Residual plot
 - Plot \(\hat{\epsilon}_{ij} \) vs \(\hat{y}_{ij} \)
 - Is the range constant for different levels of \(\hat{y}_{ij} \)

- More formal tests:
 - Bartlett’s Test
 - Modified Levene’s Test.
Bartlett’s Test

- Uses sample variances as estimates of population variances
- $H_0: \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_a^2$
- Test statistic: $\chi_0^2 = \frac{2.3026q}{c}$, where

 $q = (N - a)\log_{10} S_p^2 - \sum_{i=1}^{a} (n_i - 1)\log_{10} S_i^2$

 $c = 1 + \frac{1}{3(a-1)}(\sum_{i=1}^{a} (n_i - 1)^{-1} - (N - a)^{-1})$

$S_i^2 = \frac{\sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2}{n_i - 1}$ (sample variance at treatment i)

$S_p^2 = \frac{\sum_{i=1}^{a} (n_i - 1)S_i^2}{N - a} = MSE$ (pooled variance)

- Decision Rule: reject H_0 when $\chi_0^2 > \chi_{\alpha,a-1}^2$.

Remark: sensitive to normality assumption.
Modified Levene’s Test

- Use **mean absolution deviations** as estimates of population variances.
- For each fixed i, calculate the median m_i of $y_{i1}, y_{i2}, \ldots, y_{in_i}$.
- Compute the absolute deviation of observation from sample median:

 $$d_{ij} = |y_{ij} - m_i|$$

 for $i = 1, 2, \ldots, a$ and $j = 1, 2, \ldots, n_i$.
- Apply ANOVA to the deviations: d_{ij}
- Use the usual ANOVA F-statistic for testing $H_0 : \sigma_1^2 = \ldots = \sigma_a^2$.
options ls=80 ps=65;

title1 'Diagnostics Example';
data one;
infile 'c:saswork\data\tensile.dat';
input percent strength time;

proc glm data=one;
class percent;
model strength=percent;
means percent / hovtest=bartlett hovtest=levene;
output out=diag p=pred r=res;

proc sort; by pred;
symbol1 v=circle i=sm50; title1 'Residual Plot';
proc gplot; plot res*pred/frame; run;

proc univariate data=diag normal noprint;
var res; qqplot res / normal (L=1 mu=est sigma=est);
histogram res / normal; run;
run;

proc sort; by time;
symbol1 v=circle i=sm75;
title1 'Plot of residuals vs time';
proc gplot; plot res*time / vref=0 vaxis=-6 to 6 by 1;
run;

symbol1 v=circle i=sm50;
title1 'Plot of residuals vs time';
proc gplot; plot res*time / vref=0 vaxis=-6 to 6 by 1;
run;
Diagnostics Example

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4</td>
<td>475.7600000</td>
<td>118.9400000</td>
<td>14.76</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>161.2000000</td>
<td>8.0600000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>24</td>
<td>636.9600000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Levene’s Test for Homogeneity of strength Variance
ANOVA of Squared Deviations from Group Means

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>percent</td>
<td>4</td>
<td>91.6224</td>
<td>22.9056</td>
<td>0.45</td>
<td>0.7704</td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>1015.4</td>
<td>50.7720</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bartlett’s Test for Homogeneity of strength Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>percent</td>
<td>4</td>
<td>0.9331</td>
<td>0.9198</td>
</tr>
</tbody>
</table>
Non-constant Variance: Impact and Remedy

At different treatments \((i = 1, 2, \ldots, a)\), variances \((\sigma_i^2)'s\) are different; in particular, the variance \((\sigma_i^2)'s\) depend on treatment means \((\mu_i)'s\), i.e.

\[\sigma_i^2 = g(\mu_i). \]

- Does not affect F-test dramatically when experiment is balanced

- Why concern?
 - Further comparison of treatments depends on \(\text{MS}_E\)
 - Lead to comparison results and confidence intervals.

- Variance-Stabilizing Transformations
 - Transform data \(y_{ij}\) to \(f(y_{ij})\), e.g. \(y_{ij}\) to \(\sqrt{y_{ij}}\), with the hope that the transformed data \(f(y_{ij})\) do not violate the constant variance assumption.
 - \(f\) is called a variance-stabilizing transformation; \(\sqrt{y}\), \(\log(y)\), \(1/y\), \(\text{arcsin}(\sqrt{y})\), and \(1/\sqrt{y}\) are some commonly used transformations.
 - Transformations are also used as remedies for nonnormality
Ideas for Finding Proper Transformations

- Consider response Y with mean $E(Y) = \mu$ and variance $Var(Y) = \sigma^2$.
- That σ^2 depends on μ leads to nonconstant variances for different μ.
- Let f be a transformation and $\tilde{Y} = f(Y)$; What is the mean and variance of \tilde{Y}?
- Approximate $f(Y)$ by a linear function (Delta Method):

$$ f(Y) \approx f(\mu) + (Y - \mu)f'(\mu) $$

Mean $\tilde{\mu} = E(\tilde{Y}) = E(f(Y)) \approx E(f(\mu)) + E((Y - \mu)f'(\mu)) = f(\mu)$

Variance $\tilde{\sigma}^2 = Var(\tilde{Y}) \approx [f'(\mu)]^2Var(Y) = [f'(\mu)]^2\sigma^2$

- f is a good transformation if $\tilde{\sigma}^2$ does not depend on $\tilde{\mu}$ anymore. So, \tilde{Y} has constant variance for different $f(\mu)$.
Transformations

- Suppose σ^2 is a function of μ, that is $\sigma^2 = g(\mu)$

- Want to find transformation f such that $\tilde{Y} = f(Y)$ has constant variance: $\text{Var}(\tilde{Y})$ does not depend on μ.

- Have shown $\text{Var}(\tilde{Y}) \approx [f'(\mu)]^2 \sigma^2 = [f'(\mu)]^2 g(\mu)$

- Need to choose f such that $[f'(\mu)]^2 g(\mu) = \text{constant}$

- When $g(\mu)$ is known, f can be derived explicitly.

Examples (c is some unknown constant)

- $g(\mu) = c\mu$ (Poisson) $f(Y) = \int \frac{1}{\sqrt{\mu}} d\mu \rightarrow f(Y) = \sqrt{Y}$

- $g(\mu) = c\mu(1 - \mu)$ (Binomial) $f(Y) = \int \frac{1}{\sqrt{\mu(1-\mu)}} d\mu \rightarrow f(Y) = \arcsin(\sqrt{Y})$

- $g(\mu) = c\mu^{2\beta} (\beta \neq 1)$ (Box-Cox) $f(Y) = \int \mu^{-\beta} d\mu \rightarrow f(Y) = Y^{1-\beta}$

- $g(\mu) = c\mu^2$ (Box-Cox) $f(Y) = \int \frac{1}{\mu} d\mu \rightarrow f(Y) = \log Y$
Box-Cox Transformations

- Assume $\sigma^2 = c\mu^2\beta$, then the variance-stabilizing transform should be

$$ f(Y) = \begin{cases}
 Y^{1-\beta} & \beta \neq 1; \\
 \log Y & \beta = 1
\end{cases} $$

These transformations are referred to as Box-Cox transformations.

Clearly it is crucial to know what β is.

As a matter of fact, β can be regarded as a parameter, and it can be estimated (identified) from data.
Identify Box-Cox Transformations: An Approximate Method

- From the assumption $\sigma^2 = c \mu^{2\beta}$, we have

$$\sigma_i^2 = c \mu_i^{2\beta} \text{ for treatments } i = 1, 2, \ldots, a.$$

Take logarithm of both sides,

$$\log \sigma_i = \frac{1}{2} \log c + \beta \log \mu_i$$

- Let s_i and \bar{y}_i be the sample standard deviations and means. Because $\hat{\sigma}_i = s_i$ and $\hat{\mu}_i = \bar{y}_i$, approximately,

$$\log s_i = \text{constant} + \beta \log \bar{y}_i,$$

where $i = 1, \ldots, a$.

- We can plot $\log s_i$ against $\log \bar{y}_i$, fit a straight line and use the slope to estimate β.
Identify Box-Cox Transformation: A Formal Method

Basic idea: try all possible transformations and choose the best one. For example, consider λ in an interval, e.g. [-2, 2].

1. Fix λ, transform data y_{ij} as follows,

$$y_{ij,\lambda} = \begin{cases} \frac{y_{ij}^\lambda - 1}{\lambda \hat{y}^{\lambda - 1}} & \lambda \neq 0 \\ \hat{y} \log y_{ij} & \lambda = 0 \end{cases}$$

where $\hat{y} = \left(\prod_{i=1}^a \prod_{j=1}^{n_i} y_{ij} \right)^{1/N}$.

2. Step 1 generates a transformed data $y_{ij,\lambda}$. Apply ANOVA to the new data and obtain its SS_E. Because SS_E depends on λ, it is denoted by $SS_E(\lambda)$.

- Repeat 1 and 2 for various λ in [-2,2], and record $SS_E(\lambda)$

3. Find λ_0 that minimizes $SS_E(\lambda)$ and pick up a meaningful λ around λ_0. Then the transformation is:

$$\tilde{y}_{ij} = y_{ij,\lambda_0}^{\lambda_0} \text{ if } \lambda_0 \neq 0; \quad \tilde{y}_{ij} = \log y_{ij} \text{ if } \lambda_0 = 0.$$
An Example: boxcox.dat

```plaintext
trt  response
1   0.948916
1   0.431494
1   3.486359
.   ....
.   ....
2   3.469623
2   0.840701
2   3.816014
2   1.234756
.   ...
.   ...
3   10.680733
3   19.453816
3   3.810572
3   10.832754
3   3.814586
```
Approximate Method: trans.sas

options nocenter ps=65 ls=80;
title1 'Increasing Variance Example';
data one;
 infile 'c:\saswork\data\boxcox.dat'; input trt resp;
proc glm data=one; class trt;
 model resp=trt; output out=diag p=pred r=res;

 title1 'Residual Plot'; symbol1 v=circle i=none;
 proc gplot data=diag; plot res*pred /frame;

proc univariate data=one noprint;
 var resp; by trt; output out=two mean=mu std=sigma;
data three;
 set two; logmu = log(mu); logsig = log(sigma);

proc reg; model logsig = logmu;

 title1 'Mean vs Std Dev'; symbol1 v=circle i=rl;
 proc gplot; plot logsig*logmu /regeqn; run;
Plot of $\log s_i$ vs $\log \mu_i$

Regression Equation:
\[\log s_i = 0.263328 + 1.212067 \times \log \mu_i \]
Formal Method: trans1.sas

options ls=80 ps=65 nocenter;
title1 'Box-Cox Example';

data one;
 infile 'c:\saswork\data\boxcox.dat';
 input trt resp;
 logresp = log(resp);

proc univariate data=one noprint;
 var logresp; output out=two mean=mlogresp;

data three;
 set one; if _n_ eq 1 then set two;
 ydot = exp(mlogresp);
 do l=-1.0 to 1.0 by .25;
 den = l*ydot**(l-1); if abs(l) eq 0 then den = 1;
 yl=(resp**l -1)/den; if abs(l) < 0.0001 then yl=ydot*log(resp);
 output;
 end;
keep trt yl l;

proc sort data=three out=three; by l;
proc glm data=three noprint outstat=four;
 class trt; model yl=trt; by l;

data five; set four;
 if _SOURCE_ eq 'ERROR'; keep l SS;

proc print data=five;
run;

symbol1 v=circle i=sm50;
proc gplot;
 plot SS*l;
run;
$SS_E(\lambda)$ and λ

<table>
<thead>
<tr>
<th>OBS</th>
<th>L</th>
<th>SS</th>
<th>OBS</th>
<th>L</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.00</td>
<td>2150.06</td>
<td>10</td>
<td>0.25</td>
<td>112.37</td>
</tr>
<tr>
<td>2</td>
<td>-1.75</td>
<td>1134.83</td>
<td>11</td>
<td>0.50</td>
<td>154.23</td>
</tr>
<tr>
<td>3</td>
<td>-1.50</td>
<td>628.94</td>
<td>12</td>
<td>0.75</td>
<td>253.63</td>
</tr>
<tr>
<td>4</td>
<td>-1.25</td>
<td>369.35</td>
<td>13</td>
<td>1.00</td>
<td>490.36</td>
</tr>
<tr>
<td>5</td>
<td>-1.00</td>
<td>232.32</td>
<td>14</td>
<td>1.25</td>
<td>1081.29</td>
</tr>
<tr>
<td>6</td>
<td>-0.75</td>
<td>158.56</td>
<td>15</td>
<td>1.50</td>
<td>2636.06</td>
</tr>
<tr>
<td>7</td>
<td>-0.50</td>
<td>119.28</td>
<td>16</td>
<td>1.75</td>
<td>6924.95</td>
</tr>
<tr>
<td>8</td>
<td>-0.25</td>
<td>100.86</td>
<td>17</td>
<td>2.00</td>
<td>19233.39</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>98.09</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall, 2005
Plot of $SS_E(\lambda)$ vs λ
Using Proc Transreg

proc transreg data=one;
model boxcox(y/lambda=-2.0 to 2.0 by 0.1)=class(trt); run;

The TRANSREG Procedure
Transformation Information
for BoxCox(y)

<table>
<thead>
<tr>
<th>Lambda</th>
<th>R-Square</th>
<th>Log Like</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.0</td>
<td>0.10</td>
<td>-108.906</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.18</td>
<td>-22.154</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.19</td>
<td>-19.683</td>
</tr>
<tr>
<td>-0.3</td>
<td>0.20</td>
<td>-17.814*</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.20</td>
<td>-16.593*</td>
</tr>
<tr>
<td>-0.1</td>
<td>0.21</td>
<td>-16.067<</td>
</tr>
<tr>
<td>0.0 +</td>
<td>0.21</td>
<td>-16.284*</td>
</tr>
<tr>
<td>0.1</td>
<td>0.22</td>
<td>-17.289*</td>
</tr>
<tr>
<td>0.2</td>
<td>0.22</td>
<td>-19.124</td>
</tr>
<tr>
<td>0.3</td>
<td>0.22</td>
<td>-21.820</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2.0</td>
<td>0.10</td>
<td>-174.641</td>
</tr>
</tbody>
</table>

* Best Lambda
* Confidence Interval
+ Convenient Lambda
Nonnormality

<table>
<thead>
<tr>
<th>trt</th>
<th>nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.80 7.04</td>
</tr>
<tr>
<td>2</td>
<td>0.60 1.14</td>
</tr>
<tr>
<td>3</td>
<td>0.05 1.07</td>
</tr>
<tr>
<td>4</td>
<td>1.20 0.89</td>
</tr>
<tr>
<td>5</td>
<td>0.74 0.20</td>
</tr>
<tr>
<td>6</td>
<td>1.26 0.26</td>
</tr>
<tr>
<td>Test</td>
<td>---Statistic---</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Shapiro-Wilk</td>
<td>W 0.910027</td>
</tr>
</tbody>
</table>
Kruskal-Wallis Test: a Nonparametric alternative

a treatments, \(H_0 \): *a* treatments are not different.

- Rank the observations \(y_{ij} \) in ascending order
- Replace each observation by its rank \(R_{ij} \) (assign average for tied observations)
- Test statistic
 \[
 H = \frac{1}{S^2} \left[\sum_{i=1}^{a} \frac{R_{i.}^2}{n_i} - \frac{N(N+1)^2}{4} \right] \approx \chi^2_{a-1}
 \]
 - where \(S^2 = \frac{1}{N-1} \left[\sum_{i=1}^{a} \sum_{j=1}^{n_i} R_{ij}^2 - \frac{N(N+1)^2}{4} \right] \)
- Decision Rule: reject \(H_0 \) if \(H > \chi^2_{\alpha,a-1} \).
- Let \(F_0 \) be the \(F \)-test statistic in ANOVA based on \(R_{ij} \). Then
 \[
 F_0 = \frac{H/(a-1)}{(N-1-H)/(N-a)}
 \]
options nocenter ps=65 ls=80;

data new;
 input strain nitrogen @@;
cards;
 1 2.80 1 7.04 1 0.41 1 1.73 1 0.18
 2 0.60 2 1.14 2 0.14 2 0.16 2 1.40
 3 0.05 3 1.07 3 1.68 3 0.46 3 4.87
 4 1.20 4 0.89 4 3.22 4 0.77 4 1.24
 5 0.74 5 0.20 5 1.62 5 0.09 5 2.27
 6 1.26 6 0.26 6 0.47 6 0.46 6 3.26
;
proc npar1way;
 class strain;
 var nitrogen;
run;
The NPAR1WAY Procedure

Analysis of Variance for Variable nitrogen

 Classified by Variable strain

<table>
<thead>
<tr>
<th>strain</th>
<th>N</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2.4320</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0.6880</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1.6260</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.4640</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.9840</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1.1420</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Among</td>
<td>5</td>
<td>9.330387</td>
<td>1.866077</td>
<td>0.7373</td>
<td>0.6028</td>
</tr>
<tr>
<td>Within</td>
<td>24</td>
<td>60.739600</td>
<td>2.530817</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable nitrogen
Classified by Variable strain

<table>
<thead>
<tr>
<th>strain</th>
<th>N</th>
<th>Sum of Scores</th>
<th>Expected Under H0</th>
<th>Std Dev Under H0</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>93.00</td>
<td>77.50</td>
<td>17.967883</td>
<td>18.60</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>57.00</td>
<td>77.50</td>
<td>17.967883</td>
<td>11.40</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>78.50</td>
<td>77.50</td>
<td>17.967883</td>
<td>15.70</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>93.00</td>
<td>77.50</td>
<td>17.967883</td>
<td>18.60</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>68.00</td>
<td>77.50</td>
<td>17.967883</td>
<td>13.60</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>75.50</td>
<td>77.50</td>
<td>17.967883</td>
<td>15.10</td>
</tr>
</tbody>
</table>

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square 2.5709
DF 5
Pr > Chi-Square 0.7658