Lecture 10: 2^k Factorial Design

Montgomery: Chapter 6
\(2^k \text{ Factorial Design}\)

- Involving \(k\) factors
- Each factor has two levels (often labeled + and -)
- Factor screening experiment (preliminary study)
- Identify important factors and their interactions
- Interaction (of any order) has \textbf{ONE} degree of freedom
- Factors need not be on numeric scale
- Ordinary regression model can be employed

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon \]

Where \(\beta_1, \beta_2\) and \(\beta_{12}\) are related to main effects, interaction effects defined later.
Example:

<table>
<thead>
<tr>
<th>factor</th>
<th>replicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

- Let $\bar{y}(A_+)$, $\bar{y}(A_-)$, $\bar{y}(B_+)$ and $\bar{y}(B_-)$ be the level means of A and B.
- Let $\bar{y}(A_-B_-)$, $\bar{y}(A_+B_-)$, $\bar{y}(A_-B_+)$ and $\bar{y}(A_+B_+)$ be the treatment means
Define main effects of A (denoted again by A) as follows:

\[A = m.e.(A) = \bar{y}(A_+) - \bar{y}(A_-) \]

\[= \frac{1}{2}(\bar{y}(A_+B_+) + \bar{y}(A_+B_-)) - \frac{1}{2}(\bar{y}(A_-B_+) + \bar{y}(A_-B_-)) \]

\[= \frac{1}{2}(\bar{y}(A_+B_+) + \bar{y}(A_+B_-) - \bar{y}(A_-B_+) - \bar{y}(A_-B_-)) \]

\[= \frac{1}{2}(-\bar{y}(A_-B_-) + \bar{y}(A_+B_-) - \bar{y}(A_-B_+) + \bar{y}(A_+B_+)) \]

\[= 8.33 \]

- Let \(C_A = (-1,1,-1,1) \), a contrast on treatment mean responses, then

\[m.e.(A) = \frac{1}{2} \hat{C}_A \]

- Notice that

\[A = m.e.(A) = (\bar{y}(A_+) - \bar{y}..) - (\bar{y}(A_-) - \bar{y}..) = \hat{r}_2 - \hat{r}_1 \]

Main effect is defined in a different way than Chapter 5. But they are connected and equivalent.
• Similarly

\[B = m.e.(B) = \bar{y}(B_+) - \bar{y}(B_-) \]

\[= \frac{1}{2}(-\bar{y}(A_-B_-) - \bar{y}(A_+B_-)) + \bar{y}(A_-B_+) + \bar{y}(A_+B_+) = -5.00 \]

Let \(C_B = (-1, -1, 1, 1) \), a contrast on treatment mean responses, then \(B = m.e.(B) = \frac{1}{2} C_B \)

• Define interaction between A and B

\[AB = \text{Int}(AB) = \frac{1}{2}(m.e.(A \mid B_+) - m.e.(A \mid B_-)) \]

\[= \frac{1}{2}(\bar{y}(A_+ \mid B_+) - \bar{y}(A_- \mid B_+)) - \frac{1}{2}(\bar{y}(A_+ \mid B_-) - \bar{y}(A_- \mid B_-)) \]

\[= \frac{1}{2}(\bar{y}(A_-B_-) - \bar{y}(A_+B_-) - \bar{y}(A_-B_+) + \bar{y}(A_+B_+)) = 1.67 \]

Let \(C_{AB} = (1, -1, -1, 1) \), a contrast on treatment means, then

\[AB = \text{Int}(AB) = \frac{1}{2} C_{AB} \]
Effects and Contrasts

<table>
<thead>
<tr>
<th>factor</th>
<th>effect (contrast)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total mean</td>
</tr>
<tr>
<td>A</td>
<td>80 80/3 1 -1 -1 1</td>
</tr>
<tr>
<td>B</td>
<td>100 100/3 1 1 -1 -1</td>
</tr>
<tr>
<td></td>
<td>60 60/3 1 -1 1 -1</td>
</tr>
<tr>
<td></td>
<td>90 90/3 1 1 1 1</td>
</tr>
</tbody>
</table>

- There is a one-to-one correspondence between effects and contrasts, and contrasts can be directly used to estimate the effects.

- For a effect corresponding to contrast \(c = (c_1, c_2, \ldots) \) in \(2^2 \) design

\[
\text{effect} = \frac{1}{2} \sum_i c_i \bar{y}_i
\]

where \(i \) is an index for treatments and the summation is over all treatments.
Sum of Squares due to Effect

- Because effects are defined using contrasts, their sum of squares can also be calculated through contrasts.

- Recall for contrast \(c = (c_1, c_2, \ldots) \), its sum of squares is

\[
SS_{\text{Contrast}} = \frac{\left(\sum c_i \bar{y}_i \right)^2}{\sum c_i^2 / n}
\]

So

\[
SS_A = \frac{(-\bar{y}(A-B_-) + \bar{y}(A+B_-) - \bar{y}(A-B_+) + \bar{y}(A+B_+))^2}{4/n} = 208.33
\]

\[
SS_B = \frac{(-\bar{y}(A-B_-) - \bar{y}(A+B_-) + \bar{y}(A-B_+) + \bar{y}(A+B_+))^2}{4/n} = 75.00
\]

\[
SS_{AB} = \frac{(\bar{y}(A-B_-) - \bar{y}(A+B_-) - \bar{y}(A-B_+) + \bar{y}(A+B_+))^2}{4/n} = 8.33
\]
Sum of Squares and ANOVA

- Total sum of squares: \(SS_T = \sum_{i,j,k} y_{ijk}^2 - \frac{y^2}{N} \)
- Error sum of squares: \(SS_E = SS_T - SS_A - SS_B - SS_{AB} \)
- ANOVA Table

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Square</th>
<th>(F_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(SS_A)</td>
<td>1</td>
<td>(MS_A)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>(SS_B)</td>
<td>1</td>
<td>(MS_B)</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>(SS_{AB})</td>
<td>1</td>
<td>(MS_{AB})</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>(SS_E)</td>
<td>(N - 3)</td>
<td>(MS_E)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(SS_T)</td>
<td>(N - 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SAS file and output

option noncenter;
data one;
input A B resp;
datalines;
-1 -1 28
-1 -1 25
-1 -1 27
 1 -1 36
 1 -1 32
 1 -1 32
-1 1 18
-1 1 19
-1 1 23
 1 1 31
 1 1 30
 1 1 29;
proc glm;
class A B;
model resp=A|B;
run;

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>291.6666667</td>
<td>97.2222222</td>
<td>24.82</td>
<td>0.0002</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>31.3333333</td>
<td>3.9166667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cor Total</td>
<td>11</td>
<td>323.0000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A	1	208.3333333	208.3333333	53.19	<.0001
B	1	75.0000000	75.0000000	19.15	0.0024
A*B	1	8.3333333	8.3333333	2.13	0.1828
Analyzing 2^2 Experiment Using Regression Model

Because every effect in 2^2 design, or its sum of squares, has one degree of freedom, it can be equivalently represented by a numerical variable, and regression analysis can be directly used to analyze the data. The original factors are not necessarily continuous.

Code the levels of factor A and B as follows

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
<td>+</td>
<td>1</td>
</tr>
</tbody>
</table>

Fit regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$$

The fitted model should be

$$y = \bar{y} + \frac{A}{2} x_1 + \frac{B}{2} x_2 + \frac{AB}{2} x_1 x_2$$

i.e. the estimated coefficients are half of the effects, respectively.
SAS Code and Output

```sas
option noncenter
data one;
input x1 x2 resp;
x1x2=x1*x2;
datalines;
-1 -1 28
-1 -1 25
-1 -1 27
........
 1  1 31
 1  1 30
 1  1 29
;
proc reg;
model resp=x1 x2 x1x2;
run
```
Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>291.66667</td>
<td>97.22222</td>
<td>24.82</td>
<td>0.0002</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>31.33333</td>
<td>3.91667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>11</td>
<td>323.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|-------|-----|
| Intercept| 1 | 27.50000 | 0.57130 | 48.14 | <.0001|
| x1 | 1 | 4.16667 | 0.57130 | 7.29 | <.0001|
| x2 | 1 | -2.50000 | 0.57130 | -4.38 | 0.0024|
| x1x2 | 1 | 0.83333 | 0.57130 | 1.46 | 0.1828|
2^3 Factorial Design

Bottling Experiment:

<table>
<thead>
<tr>
<th>factor</th>
<th>treatment</th>
<th>response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>− − −</td>
<td>(1)</td>
<td>−3</td>
</tr>
<tr>
<td>+ − −</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>− + −</td>
<td>b</td>
<td>−1</td>
</tr>
<tr>
<td>+ + −</td>
<td>ab</td>
<td>2</td>
</tr>
<tr>
<td>− − +</td>
<td>c</td>
<td>−1</td>
</tr>
<tr>
<td>+ − +</td>
<td>ac</td>
<td>2</td>
</tr>
<tr>
<td>− + +</td>
<td>bc</td>
<td>1</td>
</tr>
<tr>
<td>+ + +</td>
<td>abc</td>
<td>6</td>
</tr>
</tbody>
</table>
factorial effects and constraints

Main effects:

\[A = m.e.(A) = \bar{y}(A+) - \bar{y}(A-) \]

\[= \frac{1}{4}(\bar{y}(- - -) + \bar{y}(+ - -) - \bar{y}(- + -) + \bar{y}(+ + -) - \bar{y}(- - +) \\
+ \bar{y}(+ - +) - \bar{y}(- + +) + \bar{y}(+ + +)) \]

\[= 3.00 \]

The contrast is (-1,1,-1,1,-1,1,-1,1)

\[B : (-1, -1, 1, 1, -1, -1, 1, 1), B = 2.25 \]

\[C : (-1, -1, -1, -1, 1, 1, 1, 1), C = 1.75 \]

2-factor interactions:

\[AB: A \times B \text{ componentwise, } AB=.75 \]

\[AC: A \times C \text{ componentwise, } AC=.25 \]

\[BC: B \times C \text{ componentwise, } BC=.50 \]
3-factor interaction:

\[
ABC = \text{int}(ABC) = \frac{1}{2}(\text{int}(AB \mid C+) - \text{int}(AB \mid C-))
\]

\[
= \frac{1}{4}(-\bar{y}(- - -) + \bar{y}(+- -) + \bar{y}(-+ -) - \bar{y}(++ -) + \bar{y}(- - +) - \bar{y}(+- +) - \bar{y}(- + +) + \bar{y}(++ +))
\]

\[
= .50
\]

The contrast is (-1,1,1,-1,1,-1,-1,1) = \(A \times B \times C \).
Contrasts for Calculating Effects in 2^3 Design

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>treatment</th>
<th>I</th>
<th>A</th>
<th>B</th>
<th>AB</th>
<th>C</th>
<th>AC</th>
<th>BC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>−</td>
<td>−</td>
<td>−</td>
<td>(1)</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>−1</td>
</tr>
<tr>
<td>+</td>
<td>−</td>
<td>−</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>−</td>
<td>+</td>
<td>−</td>
<td>b</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>−</td>
<td>ab</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>+</td>
<td>c</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>−</td>
<td>+</td>
<td>ac</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
</tr>
<tr>
<td>−</td>
<td>+</td>
<td>+</td>
<td>bc</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>abc</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Estimates:

grand mean: \(\frac{\sum \bar{y}_i}{2^3} \)

effect: \(\frac{\sum c_i \bar{y}_i}{2^3-1} \)

Contrast Sum of Squares:

\[
SS_{\text{effect}} = \left(\frac{\sum c_i \bar{y}_i}{2^3/n} \right)^2 = 2n(\text{effect})^2
\]

Variance of Estimate

\[
\text{Var}(\text{effect}) = \frac{\sigma^2}{n2^{3-2}}
\]

t-test for effects (confidence interval approach)

\[
effect \pm t_{\alpha/2, 2^k(n-1)} \text{S.E.}(\text{effect})
\]
Regresson Model

Code the levels of factor A and B as follows

\[
\begin{array}{c|c|c|c|c}
A & x1 & B & x2 & C & x3 \\
- & -1 & - & -1 & - & -1 \\
+ & 1 & + & 1 & + & 1 \\
\end{array}
\]

Fit regression model

\[
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \epsilon
\]

The fitted model should be

\[
y = \bar{y}.. + \frac{A}{2} x_1 + \frac{B}{2} x_2 + \frac{C}{2} x_3 + \frac{AB}{2} x_1 x_2 + \frac{AC}{2} x_1 x_3 + \frac{BC}{2} x_2 x_3 + \frac{ABC}{2} x_1 x_2 x_3
\]

i.e. \(\hat{\beta} = \text{effect} \), and

\[
\text{Var}(\hat{\beta}) = \frac{\sigma^2}{n 2^k} = \frac{\sigma^2}{n 2^3}
\]
SAS Code: Bottling Experiment

data bottle;
input A B C devi;
datalines;
-1 -1 -1 -3
-1 -1 -1 -1
 1 -1 -1 0
 1 -1 -1 1
-1 1 -1 -1
-1 1 -1 0
 1 1 -1 2
 1 1 -1 3
-1 1 1 -1
-1 1 1 0
 1 1 1 2
 1 1 1 1
-1 1 1 1
-1 1 1 1
 1 1 1 6
 1 1 1 5
Statistics 514: 2^k Factorial Design

```sas
;  
proc glm;
class A B C; model devi=A|B|C;
output out=botone r=res p=pred;
run;
proc univariate data=botone pctldef=4;var res; qqplot res / normal (L=1 mu=est sigma=est);
histogram res / normal; run;
proc gplot; plot res*pred/frame; run;

data bottlenew;
set bottle;
x1=A; x2=B; x3=C; x1x2=x1*x2; x1x3=x1*x3; x2x3=x2*x3;
x1x2x3=x1*x2*x3; drop A B C;

proc reg data=bottlenew;
model devi=x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3;
```
SAS output for Bottling Experiment

ANOVA Model:

Dependent Variable: devi

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>7</td>
<td>73.0000000000</td>
<td>10.42857143</td>
<td>16.69</td>
<td>0.0003</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>5.0000000000</td>
<td>0.62500000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CorTotal</td>
<td>15</td>
<td>78.0000000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>36.0000000000</td>
<td>36.00000000</td>
<td>57.60</td>
<td><.0001</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>20.2500000000</td>
<td>20.25000000</td>
<td>32.40</td>
<td>0.0005</td>
</tr>
<tr>
<td>A*B</td>
<td>1</td>
<td>2.2500000000</td>
<td>2.25000000</td>
<td>3.60</td>
<td>0.0943</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>12.2500000000</td>
<td>12.25000000</td>
<td>19.60</td>
<td>0.0022</td>
</tr>
<tr>
<td>A*C</td>
<td>1</td>
<td>0.2500000000</td>
<td>0.25000000</td>
<td>0.40</td>
<td>0.5447</td>
</tr>
<tr>
<td>B*C</td>
<td>1</td>
<td>1.0000000000</td>
<td>1.00000000</td>
<td>1.60</td>
<td>0.2415</td>
</tr>
<tr>
<td>ABC</td>
<td>1</td>
<td>1.0000000000</td>
<td>1.00000000</td>
<td>1.60</td>
<td>0.2415</td>
</tr>
</tbody>
</table>
Regression Model:

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|------------|----|--------------------|----------------|---------|------|---|
| Intercept | 1 | 1.00000 | 0.19764 | 5.06 | 0.0010 |
| x1 | 1 | 1.50000 | 0.19764 | 7.59 | <.0001 |
| x2 | 1 | 1.12500 | 0.19764 | 5.69 | 0.0005 |
| x3 | 1 | 0.87500 | 0.19764 | 4.43 | 0.0022 |
| x1x2 | 1 | 0.37500 | 0.19764 | 1.90 | 0.0943 |
| x1x3 | 1 | 0.12500 | 0.19764 | 0.63 | 0.5447 |
| x2x3 | 1 | 0.25000 | 0.19764 | 1.26 | 0.2415 |
| x1x2x3 | 1 | 0.25000 | 0.19764 | 1.26 | 0.2415 |
General 2^k Design

- k factors: A, B, \ldots, K each with 2 levels (+, −)
- consists of all possible level combinations (2^k treatments) each with n replicates
- Classify factorial effects:

<table>
<thead>
<tr>
<th>type of effect</th>
<th>label</th>
<th>the number of effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>main effects (of order 1)</td>
<td>A, B, C, \ldots, K</td>
<td>k</td>
</tr>
<tr>
<td>2-factor interactions (of order 2)</td>
<td>AB, AC, \ldots, JK</td>
<td>$\binom{k}{2}$</td>
</tr>
<tr>
<td>3-factor interactions (of order 3)</td>
<td>ABC, ABD, \ldots, IJK</td>
<td>$\binom{k}{3}$</td>
</tr>
<tr>
<td></td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>k-factor interaction (of order k)</td>
<td>$ABC \cdots K$</td>
<td>$\binom{k}{k}$</td>
</tr>
</tbody>
</table>
In total, how many effects?

Each effect (main or interaction) has 1 degree of freedom

full model (i.e. model consisting of all the effects) has \(2^k - 1\) degrees of freedom.

Error component has \(2^k(n - 1)\) degrees of freedom (why?).

One-to-one correspondence between effects and contrasts:

- For main effect: convert the level column of a factor using \(- \implies -1\) and \(+ \implies 1\)

- For interactions: multiply the contrasts of the main effects of the involved factors, componentwisely.
General 2^k Design: Analysis

- Estimates:

 \[
 \text{grand mean} : \quad \frac{\sum \bar{y}_i}{2^k}
 \]

For effect with contrast $C = (c_1, c_2, \ldots, c_{2^k})$, its estimate is

\[
\text{effect} = \frac{\sum c_i \bar{y}_i}{2^{(k-1)}(n-1)}
\]

- Variance

\[
\text{Var}(\text{effect}) = \frac{\sigma^2}{n2^{k-2}}
\]

what is the standard error of the effect?

- t-test for H_0: effect=0. Using the confidence interval approach,

\[
\text{effect} \pm t_{\alpha/2, 2^k(n-1)} \text{S.E.}(\text{effect})
\]
Using ANOVA model:

- Sum of Squares due to an effect, using its constrast,

\[SS_{\text{effect}} = \frac{\sum c_i \hat{y}_i^2}{2^k/n} = n2^{k-2}(\text{effect})^2 \]

- \(SS_T \) and \(SS_E \) can be calculated as before and a ANOVA table including SS due to the effests and \(SS_E \) can be constructed and the effects can be tested by \(F \)-tests.

Using regression:

- Introducing variables \(x_1, \ldots, x_k \) for main effects, their products are used for interactsions, the following regression model can be fitted

\[y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \ldots + \beta_{12\ldots k} x_1 x_2 \cdots x_k + \epsilon \]

The coefficients are estimated by half of effects they represent, that is,

\[\hat{\beta} = \frac{\text{effect}}{2} \]
Unreplicated 2^k Design

Filtration Rate Experiment
<table>
<thead>
<tr>
<th>factor</th>
<th>filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>−−−−</td>
<td>+−−−</td>
</tr>
<tr>
<td>+−−−</td>
<td>−−−−</td>
</tr>
<tr>
<td>−++−</td>
<td>+−−−</td>
</tr>
<tr>
<td>+−−−</td>
<td>−−−−</td>
</tr>
<tr>
<td>−−−++</td>
<td>+−−−</td>
</tr>
<tr>
<td>+−−−</td>
<td>−−−−</td>
</tr>
<tr>
<td>−++−</td>
<td>+−−−</td>
</tr>
<tr>
<td>+−−−</td>
<td>−−−−</td>
</tr>
<tr>
<td>−−−++</td>
<td>+−−−</td>
</tr>
<tr>
<td>+−−−</td>
<td>−−−−</td>
</tr>
<tr>
<td>−++−</td>
<td>+−−−</td>
</tr>
<tr>
<td>+−−−</td>
<td>−−−−</td>
</tr>
<tr>
<td>−−−++</td>
<td>+−−−</td>
</tr>
<tr>
<td>+−−−</td>
<td>−−−−</td>
</tr>
<tr>
<td>−++−</td>
<td>+−−−</td>
</tr>
<tr>
<td>+−−−</td>
<td>−−−−</td>
</tr>
</tbody>
</table>
Unreplicated 2^k Design

- No degree of freedom left for error component if full model is fitted.
- Formulas used for estimates and contrast sum of squares are given in Slides 26-27 with n=1
- No error sum of squares available, cannot estimate σ^2 and test effects in both the ANOVA and Regression approaches.
- **Approach 1**: pooling high-order interactions
 - Often assume 3 or higher interactions do not occur
 - Pool estimates together for error
 - Warning: may pool significant interaction
Unreplicated 2^k Design

- Approach 2: Using the normal probability plot (QQ plot) to identify significant effects.
 - Recall

$$\text{Var}(\text{effect}) = \frac{\sigma^2}{2^{(k-2)}}$$

If the effect is not significant (=0), then the effect estimate follows

$$N(0, \frac{\sigma^2}{2^{(k-2)}})$$

- Assume all effects not significant, their estimates can be considered as a random sample from $N(0, \frac{\sigma^2}{2^{(k-2)}})$
- QQ plot of the estimates is expected to be a linear line
- Deviation from a linear line indicates significant effects
Using SAS to generate QQ plot for effects

goption colors=(none);

data filter;
 do D = -1 to 1 by 2; do C = -1 to 1 by 2;
 do B = -1 to 1 by 2; do A = -1 to 1 by 2;
 input y @@; output;
 end; end; end; end;

datalines;
45 71 48 65 68 60 80 65 43 100 45 104 75 86 70 96
;

data inter; /* Define Interaction Terms */
 set filter;
 AB=A*B; AC=A*C; AD=A*D; BC=B*C; BD=B*D; CD=C*D; ABC=AB*C; ABD=AB*D;
 ACD=AC*D; BCD=BC*D; ABCD=ABC*D;

proc glm data=inter; /* GLM Proc to Obtain Effects */
 class A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD;
 model y=A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD;
estimate 'A' A 1 -1; estimate 'AC' AC 1 -1;
run;

proc reg outest=effects data=inter; /* REG Proc to Obtain Effects */
 model y=A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD;

data effect2; set effects;
drop y intercept _RMSE_;
proc transpose data=effect2 out=effect3;
data effect4; set effect3; effect=col1*2;
proc sort data=effect4; by effect;
proc print data=effect4;

 /*Generate the QQ plot */
proc rank data=effect4 out=effect5 normal=blom;
 var effect; ranks neff;
proc print data=effect5;
symbol1 v=circle;
proc gplot data=effect5;
 plot effect*neff=_NAME_;
run;
Ranked Effects

<table>
<thead>
<tr>
<th>Obs</th>
<th>NAME</th>
<th>COL1</th>
<th>effect</th>
<th>neff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC</td>
<td>-9.0625</td>
<td>-18.125</td>
<td>-1.73938</td>
</tr>
<tr>
<td>2</td>
<td>BCD</td>
<td>-1.3125</td>
<td>-2.625</td>
<td>-1.24505</td>
</tr>
<tr>
<td>3</td>
<td>ACD</td>
<td>-0.8125</td>
<td>-1.625</td>
<td>-0.94578</td>
</tr>
<tr>
<td>4</td>
<td>CD</td>
<td>-0.5625</td>
<td>-1.125</td>
<td>-0.71370</td>
</tr>
<tr>
<td>5</td>
<td>BD</td>
<td>-0.1875</td>
<td>-0.375</td>
<td>-0.51499</td>
</tr>
<tr>
<td>6</td>
<td>AB</td>
<td>0.0625</td>
<td>0.125</td>
<td>-0.33489</td>
</tr>
<tr>
<td>7</td>
<td>ABCD</td>
<td>0.6875</td>
<td>1.375</td>
<td>-0.16512</td>
</tr>
<tr>
<td>8</td>
<td>ABC</td>
<td>0.9375</td>
<td>1.875</td>
<td>-0.00000</td>
</tr>
<tr>
<td>9</td>
<td>BC</td>
<td>1.1875</td>
<td>2.375</td>
<td>0.16512</td>
</tr>
</tbody>
</table>

```sas
data filter;
  do D = -1 to 1 by 2;
do C = -1 to 1 by 2;
do B = -1 to 1 by 2;
do A = -1 to 1 by 2;
  input y @@; output;
end; end; end; end;
datalines;
45 71 48 65 68 60 80 65 43 100 45 104 75 86 70 96
;5  -1.625 -0.94578
4   CD    -0.5625  -1.125  -0.71370
5   BD    -0.1875  -0.375  -0.51499
6   AB    0.0625   0.125   -0.33489
7   ABCD  0.6875   1.375   -0.16512
8   ABC   0.9375   1.875   -0.00000
9   BC    1.1875   2.375   0.16512
```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>B</td>
<td>1.5625</td>
<td>3.125</td>
</tr>
<tr>
<td>11</td>
<td>ABD</td>
<td>2.0625</td>
<td>4.125</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>4.9375</td>
<td>9.875</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>7.3125</td>
<td>14.625</td>
</tr>
<tr>
<td>14</td>
<td>AD</td>
<td>8.3125</td>
<td>16.625</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>10.8125</td>
<td>21.625</td>
</tr>
</tbody>
</table>
QQ plot
Filtration Experiment Analysis

Fit a linear line based on small effects, identify the effects which are potentially significant, then use ANOVA or regression fit a sub-model with those effects.

1. Potentially significant effects: A, AD, C, D, AC.

2. Use main effect plot and interaction plot

3. ANOVA model involving only A, C, D and their interactions (projecting the original unreplicated 2^4 experiment onto a replicated 2^3 experiment)

4. regression model only involving A, C, D, AC and AD.

5. Diagnostics using residuals.
Interaction Plots for \(AC \) and \(AD \)

* data step is the same.

```
proc sort; by A C;
proc means noprint;
var y; by A C;
output out=ymeanac mean=mn;

symbol1 v=circle i=join; symbol2 v=square i=join;
proc gplot data=ymeanac; plot mn*A=C;
run;
```

* similar code for AD interaction plot
ANOVA with A, C and D and their interactions

```
proc glm data=filter;
class A C D;
model y=A|C|D;

Source      DF  Sum Squares   Mean Square   F Value  Pr > F
---        ---    ---------    ---------    --------  ------
Model      7   5551.437500    793.062500    35.35    <.0001
Error      8   179.500000     22.437500
Cor Total  15   5730.937500

Source      DF   Type I SS   Mean Square   F Value  Pr > F
---        ---    ---------    ---------    --------  ------
A          1    1870.562500  1870.562500    83.37    <.0001
C          1    390.062500   390.062500    17.38    0.0031
A*C        1    1314.062500  1314.062500    58.57    <.0001
D          1    855.562500   855.562500    38.13    0.0003
A*D        1    1105.562500  1105.562500    49.27    0.0001
C*D        1     5.062500    5.062500      0.23    0.6475
A*C*D      1    10.562500    10.562500      0.47    0.5120
```

*ANOVA confirms that A, C, D, AC and AD are significant effects.
Regression Model

* the same date step

data inter; set filter; AC=A*C; AD=A*D;

proc reg data=inter; model y=A C D AC AD;
output out=outres r=res p=pred;

proc gplot data=outres; plot res*pred; run;

==
Dependent Variable: y

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5</td>
<td>5535.81250</td>
<td>1107.16250</td>
<td>56.74</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>195.12500</td>
<td>19.51250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>15</td>
<td>5730.93750</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 4.41730 R-Square 0.9660
Dependent Mean: 70.06250
Adj R-Sq: 0.9489
Coeff Var: 6.30479

| Variable | DF | Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|-----------|----------------|---------|-------|---|
| Intercept| 1 | 70.06250 | 1.10432 | 63.44 | <.0001|
| A | 1 | 10.81250 | 1.10432 | 9.79 | <.0001|
| C | 1 | 4.93750 | 1.10432 | 4.47 | 0.0012|
| D | 1 | 7.31250 | 1.10432 | 6.62 | <.0001|
| AC | 1 | -9.06250 | 1.10432 | -8.21 | <.0001|
| AD | 1 | 8.31250 | 1.10432 | 7.53 | <.0001|
Response Optimization / Best Setting Selection

Use x_1, x_3, x_4 for A, C, D; and x_1x_3, x_1x_4 for AC, AD respectively. The regression model gives the following function for the response (filtration rate):

$$y = 70.06 + 10.81x_1 + 4.94x_3 + 7.31x_4 - 9.06x_1x_3 + 8.31x_1x_4$$

Want to maximize the response. Let D be set at high level ($x_4 = 1$)

$$y = 77.37 + 19.12x_1 + 4.94x_3 - 9.06x_1x_3$$

Contour plot

goption colors=(none);
data one;
do x1 = -1 to 1 by .1;
 do x3 = -1 to 1 by .1;
 y=77.37+19.12*x1 +4.94*x3 -9.06*x1*x3 ; output;
 end; end;
proc gcontour data=one; plot x3*x1=y;
run; quit;
Contour Plot for Response Given D
Residual Plot
Some Other Issues

- Half normal plot for \((x_i), i = 1, \ldots, n:\)
 - let \(\tilde{x}_i\) be the absolute values of \(x_i\)
 - sort the \((\tilde{x}_i): \tilde{x}(1) \leq \ldots \leq \tilde{x}(n)\)
 - calculate \(u_i = \Phi^{-1}\left(\frac{n+i}{2n+1}\right), i = 1, \ldots, n\)
 - plot \(\tilde{x}(i)\) against \(u_i\)
 - look for a straight line

Half normal plot can also be used for identifying important factorial effects

- Other methods to identify significant factorial effects (Lenth method).

- Detect dispersion effects

- Experiment with duplicate measurements
 - for each treatment combination: \(n\) responses from duplicate
measurements

- calculate mean \bar{y} and standard deviation s.

- Use \bar{y} and treat the experiment as unreplicated in analysis.