Assignment 1
Due Next Thursday 5pm

1. Let A be an $n \times n$ nonsingular square matrix, x be a n dimensional vector and c be a constant.
 (a) Show that
 \[
 \det \begin{pmatrix} A & x \\ x' & c \end{pmatrix} = |A|(c - x'A^{-1}x)
 \]
 (b) Show that $|A + xx'| = |A|(1 + x'A^{-1}x)$.

2. Let A be an $m \times n$ matrix.
 (a) Show that $\text{rank}(AA') = \text{rank}(A'A) = \text{rank}(A) = \text{rank}(A')$.
 (b) Show that $\mathcal{R}(AA') = \mathcal{R}(A)$.

3. Find the eigenvalues and eigenvectors of the matrix given below by hand.
 \[
 \begin{pmatrix}
 4 & 2 & 0 & 4 \\
 0 & 2 & -1 & 0 \\
 0 & 0 & 3 & 3 \\
 0 & 4 & 0 & 7
 \end{pmatrix}
 \]

4. Show that a symmetric matrix A is of rank 1 if and only if $A = aa'$ where a is a nonzero vector.

5. Let A be a positive definite matrix.
 (a) Show that
 \[
 \max_{x \neq 0} \frac{(b'x)^2}{x'Ax} = b'A^{-1}b
 \]
 where b is a given vector.
 (b) $(x'Ay)^2 \leq (x'Ax)(y'Ay)$ for any x and y.
 (c) $(x'y)^2 \leq (x'Ax)(y'A^{-1}y)$ for any x and y.

6. Let $A = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$ be an $n \times n$ matrix and X be a $r \times r$ sub-matrix. Suppose $\text{rank}(A) = r < n$ and X is nonsingular.
 (a) Show that $W = ZX^{-1}Y$.
 (b) Show that $\begin{pmatrix} X^{-1} & 0 \\ 0 & 0 \end{pmatrix}$ is a generalized inverse of A.