1. KNNL Problem 2.17

Solution: Since the analyst concluded $H_a : \beta_1 \neq 0$, the p-value $= 0.033 < \alpha$ and the analyst rejected H_0. The significance level α was greater than 0.033, probably $\alpha = 0.05$. If the α level had been 0.01, I would fail to reject H_0.

2. KNNL Problem 2.22

Solution: Theoretically, it is possible that $R^2 = 0$ for part of the data; i.e. the scatterplot shows no pattern at all for the first ten cases, but $R^2 \neq 0$ for the complete dataset; i.e. the scatterplot shows pattern for the complete set. It is also possible that $R^2 \neq 0$ for part of the data; i.e. the scatterplot shows some pattern for the first ten cases, yet the pattern disappears when you plot all the cases.

3. Given that $R^2 = SSM/SST$, it can be shown that $R^2/(1 - R^2) = SSM/SSE$. If you have $n = 22$ cases and $R^2 = 0.4$, what is the F-statistic for the test that the slope is equal to zero?

Solution: The degrees of freedom are $DFM = 1$ and $DFE = n - 2 = 20$. The F-statistic is

$$F = \frac{MSM}{MSE} = \frac{SSM/DFM}{SSE/DFE} = \frac{SSM}{SSE} \frac{DFE}{DFM} = \frac{R^2}{(1 - R^2)} \frac{20}{1} = \frac{0.4 \times 20}{0.6} = 13.33.$$

The $\alpha = 0.05$ critical value for $F_{1,20}$ is 4.35 (from page 1322), and the p-value using that df is 0.0016. We reject $H_0 : \beta_1 = 0$ and conclude that the slope it not zero.

4. Calculate power for the slope using the results of text Problem 1.22 as follows. Assume $n = 16$, $\sigma^2 = MSE$, and $SS_X = 1280$.

(a) Find the power for rejecting the null hypothesis that the regression slope is zero using an $\alpha = 0.02$ significance test when the alternative is $\beta_1 = 0.6$.

Solution: The power against $H_A : \beta_1 = 0.6$ (calculated using SAS) is 1, see Figure 2.

(b) Plot the power as a function of β_1 for values of β_1 between -2.8 and +2.8 in increments of 0.2.

Solution: See the attached graph (Figure 3).

The next 5 problems continue the analysis of the plastic hardness data begun in the first homework.
Figure 1: Graph for Problem 2.22

Figure 2: Table for Problem 4a
5. Plot the data using `proc gplot`. Use `frame` as an option with the `plot` statement and include a smoothed function on the plot by using the `i = smnn` option on the `symbol1` statement, where `nn` is a number between 1 and 99. Please use the number 70. Is the relationship approximately linear?

 Solution: Yes, the relationship is reasonably linear. (See Figure 4.) There is some slight curvature at lower values of time but nothing substantial.

6. Plot the 94% bounds (confidence band) for the mean (use `i=rlclm` on the `symbol1` statement).

 Solution: See the attached graph (Figure 5).

7. Plot the 94% bounds for individual observations (using `i=rlcli`).

 Solution: See the attached graph (Figure 6).

8. Give an estimate of the mean hardness that you would expect after 36 and 43 hours; and a 94% confidence interval for each estimate. Which confidence interval is wider and why is it wider?

 Solution: Based on the SAS output, the predicted value of hardness at 36 hours is 241.8375, and a 94% confidence interval for the mean hardness is [239.6180, 244.0570]. The SAS output also gives that at 43 hours, the predicted hardness is 256.0781, and
a 94% confidence interval for mean hardness is [252.8479, 259.3083]. The confidence interval for $X = 43$ is wider because the value 43 is farther away from the sample mean \bar{X} than is 36. As a result, the standard error for the prediction is larger.

9. Give a prediction for the hardness that you would expect for an individual piece of plastic after 43 hours; give a 94% prediction interval for this quantity.

Solution: We predict a hardness of 256.0781 after 43 hours; we are 94% confident that the hardness value will fall in the interval [248.7144, 263.4418].
Figure 5: Graph for Problem 6

Figure 6: Graph for Problem 7
<table>
<thead>
<tr>
<th>Obs</th>
<th>time</th>
<th>Variable</th>
<th>Predicted Value</th>
<th>Std Error Mean Predict</th>
<th>94% CL Mean</th>
<th>94% CL Predict</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>199.0000</td>
<td>201.1500</td>
<td>1.3529</td>
<td>198.3818</td>
<td>203.9182</td>
<td>-2.1500</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>205.0000</td>
<td>201.1500</td>
<td>1.3529</td>
<td>198.3818</td>
<td>203.9182</td>
<td>3.8500</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>196.0000</td>
<td>201.1500</td>
<td>1.3529</td>
<td>198.3818</td>
<td>203.9182</td>
<td>-5.1500</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>200.0000</td>
<td>201.1500</td>
<td>1.3529</td>
<td>198.3818</td>
<td>203.9182</td>
<td>-1.1500</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>218.0000</td>
<td>217.4250</td>
<td>0.8857</td>
<td>215.6128</td>
<td>219.2372</td>
<td>0.5750</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>220.0000</td>
<td>217.4250</td>
<td>0.8857</td>
<td>215.6128</td>
<td>219.2372</td>
<td>2.5750</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>215.0000</td>
<td>217.4250</td>
<td>0.8857</td>
<td>215.6128</td>
<td>219.2372</td>
<td>-2.4250</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>223.0000</td>
<td>217.4250</td>
<td>0.8857</td>
<td>215.6128</td>
<td>219.2372</td>
<td>5.5750</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>237.0000</td>
<td>233.7000</td>
<td>0.8857</td>
<td>231.8878</td>
<td>235.5122</td>
<td>3.3000</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>234.0000</td>
<td>233.7000</td>
<td>0.8857</td>
<td>231.8878</td>
<td>235.5122</td>
<td>0.3000</td>
</tr>
<tr>
<td>11</td>
<td>32</td>
<td>235.0000</td>
<td>233.7000</td>
<td>0.8857</td>
<td>231.8878</td>
<td>235.5122</td>
<td>1.3000</td>
</tr>
<tr>
<td>12</td>
<td>32</td>
<td>230.0000</td>
<td>233.7000</td>
<td>0.8857</td>
<td>231.8878</td>
<td>235.5122</td>
<td>-3.7000</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>250.0000</td>
<td>249.9750</td>
<td>1.3529</td>
<td>247.2068</td>
<td>252.7432</td>
<td>0.0250</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>248.0000</td>
<td>249.9750</td>
<td>1.3529</td>
<td>247.2068</td>
<td>252.7432</td>
<td>-1.9750</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>253.0000</td>
<td>249.9750</td>
<td>1.3529</td>
<td>247.2068</td>
<td>252.7432</td>
<td>3.0250</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>246.0000</td>
<td>249.9750</td>
<td>1.3529</td>
<td>247.2068</td>
<td>252.7432</td>
<td>-3.9750</td>
</tr>
<tr>
<td>17</td>
<td>36</td>
<td>.</td>
<td>241.8375</td>
<td>1.0847</td>
<td>239.6180</td>
<td>244.0570</td>
<td>.</td>
</tr>
<tr>
<td>18</td>
<td>43</td>
<td>.</td>
<td>256.0781</td>
<td>1.5787</td>
<td>252.8479</td>
<td>259.3083</td>
<td>.</td>
</tr>
</tbody>
</table>

Figure 7: Graph for Problem 8