INTRODUCTION TO PROBABILITY MODELS

Lecture 31

Qi Wang, Department of Statistics

Apr 2, 2018
COMBINING NORMAL DISTRIBUTIONS

If we have independent Normal random variables, then the sum (or other linear combination) of these Normal random variables is ALSO Normal

If

\[X_1 \sim N(\mu_1, \sigma_1), X_2 \sim N(\mu_2, \sigma_2), \ldots, X_n \sim N(\mu_n, \sigma_n), \]

and \(X = \sum_{i=1}^{n} X_i \), then

- \(X \sim N(\mu, \sigma) \)
- \(\mu = E[X] = \sum_{i=1}^{n} \mu_i \)
- \(Var(X) = \sum_{i=1}^{n} \sigma_i^2 \)
- \(\sigma = SD(X) = \sqrt{Var(X)} = \sqrt{\sum_{i=1}^{n} \sigma_i^2} \)
EXAMPLE 1

Let X_1, X_2 and X_3 be independent Normal random variables, where

$X_1 \sim N(\mu = 4, \sigma = 2), X_2 \sim N(\mu = 3.1, \sigma = 7), X_3$

1. If $Y = X_1 + X_2 + X_3$, then what is the distribution of Y? Find the 83rd percentile of Y

2. Let $K = 2X_3 - X_2 + \frac{1}{3}X_1$, What is the distribution of K
NORMAL APPROXIMATION TO THE BINOMIAL

If a Binomial distribution has a large enough combination of n and p, it behaves much like a Normal distribution, which means we can use the Normal distribution to approximate the original Binomial distribution

- If $X \sim Bin(n, p)$, and $np > 5, n(1 - p) > 5$
- Then we can use $X^* \sim N(\mu = np, \sigma = \sqrt{np(1 - p)})$, to approximate X

You may notice that Binomial is Discrete, and Normal is Continuous. This means the approximation comes at a cost of accuracy that we must try to correct. When we use the approximation, we need to perform a continuity correction:

- If you’re looking for: $P(a \leq X \leq b)$
- Use $P(a - 0.5 < X^* < b + 0.5)$
EXAMPLE 2

A class has 400 students, and each drops the course independently with probability 0.07. Let X be the number of students that finish the course

1. Find $P(370 \leq X \leq 373)$, what is the exact distribution of X?
2. Any approximation?