Problem 1 (5 pt) The aim of this problem is to study how to generate Gaussian random variables.

- Generate 10000 samples from a standard normal distribution (zero mean and unit variance) using at least three methods we discussed in the class. Compare and comment on the merits and demerits of the various methods.
- Select your favorite method and extend it to draw 3 dimensional (multivariate) normal samples with mean $\mu = (0, 0, 0)$ and covariance $\Sigma = I$.
- Extend the above procedure to draw samples from an arbitrary 3 dimensional normal distribution with mean μ and covariance Σ. Describe clearly the procedure you employed. (Hint: You need to use the eigenvalue decomposition to solve this problem. We did not discuss this problem in the class).

Problem 2 (5 pt) Recall the regularized risk minimizing framework for deriving new classifiers. This time we will minimize the following objective function

$$J(w) = \frac{1}{2} ||w||^2 + \sum_{i=1}^{m} \max(0, 1 - y_i(w, \phi(x_i)))^2.$$

Clearly, the objective function is convex and smooth (check for yourself!). The aim here is to use coordinate descent to find the optimal w by using coordinate descent. Unlike gradient descent and other procedures which
update all the coordinates of \(w \) at every iteration, the coordinate descent procedure updates only one randomly chosen coordinate per iteration (see details in the textbook). Your task is to

- Derive the one dimensional objective function in order to apply coordinate descent.
- Think about how you will perform a line search along the chosen coordinate.
- Implement your optimizer and test it on the ECML/PAKDD discovery challenge dataset that you used in the previous HW.
- Compare the coordinate descent procedure with any other optimizer of your choice (BFGS, Gradient Descent etc).
- Write a report to document your findings.