There are totally 38 points in the exam. The students with score higher than or equal to 35 points will receive 35 points. Please write down your name and student ID number below.

NAME:

ID:
1. (8 points) The following data reported a study about the number of a kind of birds with a few explanatory variables in 20 locations in Northern Canada. The count of birds are given by the number of birds in a hectare area in each location. The explanatory variables include the resource of food (food), the resource of water (water), and local temperature (temp). Values of explanatory variables are relative to their long term standards. The R output is given below.

```r
> summary(mod1)
Call:
glm(formula = count ~ (food + water + temp)^2, family = poisson, 
data = birds)
Coefficients:
                Estimate Std. Error z value Pr(>|z|) 
(Intercept)    3.02120   0.06543   46.17 <2e-16 *** 
food           1.23264   0.10387   11.87 <2e-16 ***
water          0.39001   0.20996    1.86  0.0632 .  
temp           -0.20774   0.19279   -1.08  0.2812
food:water     0.53913   0.35853    1.50  0.1326
food:temp      0.40270   0.31042    1.29  0.1945
water:temp     0.85460   0.91502    0.93  0.3503
```

Null deviance: 283.986 on 19 degrees of freedom
Residual deviance: 12.485 on 13 degrees of freedom

```r
> mod2 <- glm(count~food+water+temp,family=poisson,data=birds)
> summary(mod2)
Call:
glm(formula = count ~ food + water + temp, family = poisson, 
data = birds)
Coefficients:
                Estimate Std. Error t value Pr(>|t|) 
(Intercept)   3.00887   0.06415  47.54 <2e-16 ***
food          1.22372   0.08997  13.64 <2e-16 ***
water         0.64840   0.13893   4.67 3.06e-06 ***
temp          -0.05684   0.16077  -0.35  0.724
```

Null deviance: 283.986 on 19 degrees of freedom
Residual deviance: 18.708 on 16 degrees of freedom

```r
> summary(mod3)
Call:
glm(formula = count ~ food + water, family = poisson, data = birds)
Coefficients:
                Estimate Std. Error t value Pr(>|t|) 
(Intercept)   3.00255   0.06186  48.96 <2e-16 ***
```
null deviance: 283.986 on 19 degrees of freedom
Residual deviance: 18.833 on 17 degrees of freedom

> summary(mod3)$cov.unscaled

<table>
<thead>
<tr>
<th></th>
<th>(Intercept)</th>
<th>food</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.003826726</td>
<td>-0.003640855</td>
<td>-0.0033240180</td>
</tr>
<tr>
<td>food</td>
<td>-0.003640855</td>
<td>0.0067838256</td>
<td>0.0007683732</td>
</tr>
<tr>
<td>water</td>
<td>-0.003324018</td>
<td>0.0007683732</td>
<td>0.0192638199</td>
</tr>
</tbody>
</table>

> round(qchisq(0.95,1:6),2)

[1] 3.84 5.99 7.81 9.49 11.07 12.59

(a) (2 points). Justify whether overdispersion is a concern. Provide a test about whether interaction effects can be ignored.

(b) (2 points). Define a statistic similar to R^2 in regression. Provide values of the statistic in the three fitted models, respectively.
(c) (2 points). Provide two tests for the significance of temperature based on the main effect model.

(d) (2 points). Provide the 95% confidence interval of the count when food = 1.0 and water = 0.8.
2. (10 points) The data reports the impurity of ironstone collected by four different methods and five different operators. Each operator used the four methods to collect five samples, and the impurity is reported. The R output is given below.

> g <- lm(yy~method*operator)
> anova(g)
Analysis of Variance Table
Response: yy
Df Sum Sq Mean Sq F value Pr(>F)
method 3 422.14 140.712 6.5459 0.0005148 ***
operator 4 895.97 223.992 10.4200 7.624e-07 ***
method:operator 12 394.41 32.867 1.5290 0.1310873
Residuals 80 1719.70 21.496

> gg <- lme(yy~method,random=~1|operator)
> summary(gg)
Linear mixed-effects model fit by REML
Random effects:
 Formula: ~1 | operator
 (Intercept) Residual
 StdDev: 3.17027 4.793686
Fixed effects: yy ~ method
 Value Std.Error DF t-value p-value
 (Intercept) 23.535 1.7115 92 13.7509 0.0000
 methodB 1.344 1.3559 92 0.9910 0.3243
 methodC 3.749 1.3559 92 2.7651 0.0069
 methodD -1.893 1.3559 92 -1.3962 0.1660

> g0 <- lme(yy~1,random=~1|operator,method="ML")
> g1 <- lme(yy~method,random=~1|operator,method="ML")
> anova(g1,g0)

Model df AIC BIC logLik Test L.Ratio p-value
g1 1 6 616.4686 632.0996 -302.2343
 g0 2 3 627.7635 635.5790 -310.8818 1 vs 2 17.29492 6e-04

(a) (2 points) Is the dataset nested or not? Explain.
(b) (2 points) Write down the linear mixed-effect model that was fitted in the R output. Specify model assumptions.

(c) (2 points) Write down estimates of model parameters in the previous part. If zero-sum constraint is used, what are the estimates of fixed effects.

(d) (2 points) Explain the method and the result of the test in the R output.

(e) (2 points) Can the testing method in the previous part be used for significance of the random effect? If not, provide a test and simply describe the method.
3. (10 points) The data reports the growth of trees in a certain forest. The size of trees was measured by diameter in a ten year period for 50 trees. The R output is given.

```r
> summary(gg)
Linear mixed-effects model fit by REML
Random effects:
  Formula: ~Year | Tree
  Structure: General positive-definite, Log-Cholesky parametrization
  StdDev  Corr
(Intercept) 4.0616 (Intr)
Year 0.1810 -0.008
Residual 0.6708
Fixed effects: Diameter ~ Year
  Value Std.Error DF t-value p-value
(Intercept) 19.6076 0.5780 449 33.92097 0
Year 1.9585 0.0276 449 70.85176 0
Correlation:
  (Intr)
Year -0.045
> g0 <- lme(Diameter~Year,random=~Year|Tree,data=TreeSize,method="ML")
> g1 <- lme(Diameter~Year,random=~1|Tree,data=TreeSize,method="ML")
> anova(g0,g1)
    Model df      AIC      BIC    logLik Test L.Ratio p-value
g0     1   6 1422.727 1448.014 -705.3633
g1     2   4 1550.520 1567.379 -771.2602  1 vs 2 131.7937 <.0001
```

(a) (2 points). Specify the statistical model fitted by the code.
(b) (2 points). Write estimates of parameters in the model given in the previous part.

(c) (2 points). Compute the predicted value of the mean diameter and its 95% confidence interval when “year” is 5.

(d) (2 points). Compute the variation of tree diameters when “year” is 5.

(e) (2 points). Compute the 95% confidence interval of the observed value when “year” is 5.
4. (10 points). In the study of the effect of a treatment for late stage lung cancer, the survival weeks of two groups of patients were observed. The observed survival weeks for placebo group were: 1, 3+, 4, 4, 4, 5, 10+, 11, 12+, 12, 23+, 24, 26, 30, 32, 32, 35+, 37+, 39, 40+, and the observed survival weeks for treatment group were: 5, 12+, 13, 14, 16, 21, 23, 29+, 31, 32, 54, 54+, 61+, 73+, 76, 100, 134, 151, 188, 232+. The R output is given.

Call:
survdiff(formula = Surv(time, censor) ~ trt)

 N Observed Expected (O-E)^2/V
trt=placebo 20 13 8.22 4.8
trt=treatment 20 14 18.78 4.8

Call:
survreg(formula = Surv(time, censor) ~ trt, dist = "weibull")

 Value Std. Error z p
(Intercept) 3.3771 0.261 12.952 2.30e-38
trtreatment 1.1724 0.362 3.234 1.22e-03
Log(scale) -0.0643 0.155 -0.413 6.79e-01

Call:
coxph(formula = Surv(time, censor) ~ trt)

 coef exp(coef) se(coef) z p
trtreatment -0.97 0.379 0.455 -2.13 0.033

Call: survfit.coxph(object = gcox, newdata = data.frame(trt = placebo))

 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 14 27 1 0.62481 0.1050 4.49e-01 0.869
 16 26 1 0.58709 0.1080 4.09e-01 0.842
 21 25 1 0.55082 0.1099 3.73e-01 0.814
 23 24 1 0.51598 0.1108 3.39e-01 0.786
 24 22 1 0.48023 0.1115 3.05e-01 0.757
 26 21 1 0.44448 0.1117 2.72e-01 0.727
 30 19 1 0.40760 0.1116 2.38e-01 0.697
 31 18 1 0.37073 0.1111 2.06e-01 0.667
 32 17 3 0.26879 0.1039 1.26e-01 0.573

(a) (2 points). Compute the K-M estimator for the placebo group when $t < 20$.

(b) (2 points). Test whether the two survival functions are the same.

(c) (2 points). Suppose the death follows exponential distribution with density \(f(t) = \lambda e^{-\lambda t} \).
Compute the estimate values of \(\lambda \) for both groups.

(d) (2 points). Assume the death follows the Weibull distribution, do you accept the null hypothesis that the death also follows exponential distribution.

(e) (2 points). Write down the assumption of Cox proportional hazard model and propose a method to diagnose it. Compute the estimate of \(S(24) \) for both groups.