1. 7.1.1.

Solution: The conditional PMF is

\[f_\theta(x) = \theta^I(x=1)(1 - \theta)^I(x=2). \]

The joint PMF is

\[f_\theta(X) = \theta^I(X_1=1)+I(X_2=1)(1 - \theta)^I(X_1=2)+I(X_2=2)\pi(\theta_j), \]

where \(\pi(\theta_j) \) is given by \(\pi(1) = 0.2, \pi(2) = 0.4, \) and \(\pi(3) = 0.4. \) The marginal PMF is

\[\tilde{f}(X) = \sum_{j=1}^{3} f_\theta(X)\pi(\theta_j), \]

The posterior PMF of \(\theta \) is

\[q(\theta|X) = \frac{f_\theta(X)\pi(\theta)}{\tilde{f}(X)}. \]

We obtain the following Table.

<table>
<thead>
<tr>
<th>Joint for (\theta)</th>
<th>Posterior for (\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1/10</td>
</tr>
<tr>
<td>2</td>
<td>1/10</td>
</tr>
</tbody>
</table>

2. 7.1.2.

Solution: The posterior \(\theta \) follows \(\text{Beta}(n\bar{x} + \alpha, n(1 - \bar{x}) + \beta) \). Therefore,

\[E(\theta|x) = \frac{n\bar{x} + \alpha}{n + \alpha + \beta} \]

and

\[V(\theta|x) = \frac{(n\bar{x} + \alpha)[n(1 - \bar{x}) + \beta]}{(n + \alpha + \beta)^2(n + \alpha + \beta + 1)}. \]

3. 7.1.4.

Solution: The likelihood function given \(\lambda \) is

\[f_\lambda(X_1, \ldots, X_n) = \prod_{i=1}^{n} \frac{\lambda^{X_i}}{X_i!}e^{-\lambda} = \frac{\lambda^{n\bar{X}}}{\prod_{i=1}^{n} X_i!}e^{-n\lambda}. \]

The prior PDF for \(\theta \) is

\[\pi(\theta) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1}e^{-\beta\lambda}. \]

The joint PMF-PDF of \((X_1, \ldots, X_n, \lambda) \) is

\[f_\lambda(X_1, \ldots, X_n)\pi(\theta) = \frac{\beta^\alpha}{\Gamma(\alpha)\prod_{i=1}^{n} X_i!}\lambda^{n\bar{X}+\alpha-1}e^{-(n+\beta)\lambda}. \]

The marginal PMF of \((X_1, \ldots, X_n) \) is

\[\tilde{f}(X_1, \ldots, X_n) = \int_{0}^{\infty} f_\lambda(X_1, \ldots, X_n)\pi(\lambda)d\lambda = \frac{\beta^\alpha}{\Gamma(\alpha)\prod_{i=1}^{n} X_i!} \frac{\Gamma(n\bar{X} + \alpha)}{(n + \beta)^{n\bar{X}+\alpha}}. \]
The posterior PDF of θ is

$$q(\lambda|X_1, \cdots, X_n) = \frac{(n + \beta)^{nX + \alpha}}{\Gamma(nX + \alpha)} \lambda^{nX + \alpha - 1} e^{-(n + \beta)\lambda},$$

which is the PDF of $\Gamma(nX + \alpha, n + \beta)$.

4. 7.1.5.

Solution: The PDF of $x = (x_1, \cdots, x_n)$ is

$$f_\theta(x) = \frac{1}{\theta^n} \prod_{i=1}^n I(0 \leq x_i \leq X_n) = \frac{1}{\theta^n} I(0 \leq x_{(1)} \leq x_{(n)} I(x_{(1)} \leq x_{(n)} \leq \theta),$$

where $x_{(1)} = \min_{i \leq n}(x_i)$ and $x_{(n)} = \max_{i \leq n}(x_i)$. The prior PDF of θ is

$$\pi(\theta) = \frac{\beta^\alpha}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}.$$

The joint PDF of (x, θ) is

$$f_\theta(x)\pi(\theta) = \frac{\beta^\alpha}{\Gamma(\alpha)} I(0 \leq x_{(1)} \leq x_{(n)} I(x_{(1)} \leq x_{(n)} \leq \theta) \theta^{\alpha-1} n e^{-\beta \theta}.$$

The marginal PDF of x is

$$\tilde{f}(x) = \int_0^\infty f_\theta(x)\pi(\theta) d\theta = \frac{\beta^\alpha}{\Gamma(\alpha)} \int_{x_{(n)}}^\infty \theta^{\alpha-1} n e^{-\beta \theta} d\theta.$$

The posterior PDF of θ is

$$q(\theta|x) = \frac{\theta^{\alpha-1} n e^{-\beta \theta}}{\int_{x_{(n)}}^\infty \theta^{\alpha-1} n e^{-\beta \theta} d\theta}$$

for $\theta \geq x_{(n)}$.

5. 7.1.9.

Solution:

(a) Using $T = \sum_{i=1}^n X_i \sim Bin(n, \theta)$, the PMF of T given θ is

$$f_\theta(T) = \binom{n}{T} \theta^T (1 - \theta)^{n-T}, 0.4 \leq \theta \leq 0.6.$$

The prior PDF for θ

$$\pi(\theta) = 5, 0.4 \leq \theta \leq 0.6.$$

The joint PMF-PDF of (T, θ) is

$$f_\theta(T)\pi(\theta) = \frac{5(n!)}{T!(n-T)!} \theta^T (1 - \theta)^{n-T}.$$

The posterior PDF of θ is

$$q(\theta|T) = \frac{\theta^T (1 - \theta)^{n-T}}{\int_{0.4}^{0.6} \theta^T (1 - \theta)^{n-T} d\theta}, 0.4 \leq \theta \leq 0.6.$$
(b) Since the true value is outside $[0.4, 0.6]$, the posterior density of θ does not put any probability mass around 0.99.

(c) The prior density must be positive in the neighborhood of the true value of θ.

6. 7.2.10.

Solution: The PDF of $\mathbf{x} = (X_1, \cdots, X_n)$ given θ is

$$f_\theta(\mathbf{x}) = \prod_{i=1}^{n} \theta e^{-\theta X_i} = \theta^n e^{-n \bar{X}\theta}.$$

The prior for θ is

$$\pi(\theta) = \frac{\beta^{\alpha_0}}{\Gamma(\alpha_0)} \theta^{\alpha_0-1} e^{-\beta \theta}.$$

The joint PDF of (\mathbf{x}, θ) is

$$f_\theta(\mathbf{x})\pi(\theta) = \frac{\beta^{\alpha_0}}{\Gamma(\alpha_0)} \theta^{n+\alpha_0-1} e^{-(n \bar{X} + \beta)\theta}.$$

The posterior PDF of θ given \mathbf{x} is

$$q(\theta|\mathbf{x}) = \frac{f_\theta(\mathbf{x})\pi(\theta)}{f_\theta(\mathbf{x})\pi(\theta)d\theta} = \frac{(n\bar{X} + \beta)^{n+\alpha_0}}{\Gamma(n + \alpha_0)} \theta^{n+\alpha_0-1} e^{-(n \bar{X} + \beta)\theta},$$

which is the PDF of $\Gamma(n + \alpha_0, n\bar{X} + \beta)$. Then

$$E(\theta|\mathbf{x}) = \frac{n + \alpha_0}{n\bar{X} + \beta}$$

and

$$V(\theta|\mathbf{x}) = \frac{n + \alpha_0}{(n\bar{X} + \beta)^2}.$$

To compute the posterior, we consider

$$\log q(\theta|\mathbf{x}) = \log \frac{(n\bar{X} + \beta)^{n+\alpha_0}}{\Gamma(n + \alpha_0)} + (n + \alpha_0 - 1) \log \theta - (n \bar{X} + \beta)\theta.$$

Let its first-order derivative be zero. We have

$$\frac{n + \alpha_0 - 1}{\theta} - (n \bar{X} + \beta) = 0 \Rightarrow \theta_{\text{mode}} = \frac{n + \alpha_0 - 1}{n \bar{X} + \beta}.$$