Solutions to Methods in Fall 2003

1. (a) Let \(y_i \) and \(n_i \) be the total number of murder and the total number of crimes, \(x \) be the year index. Then the random component is \(y_i \) are independent from \(B(p_i, n_i) \) distribution for \(i = 0, 1, \cdots, 41 \); the linear component is \(\eta = \alpha + x\beta \); there are three possible link function we can use, \textit{probit link} by \(\eta_i = \Phi^{-1}(p_i) \), \textit{logistic link} bu \(\eta_i = \log[p_i/(1 - p_i)] \), and \textit{complementary loglog link} by \(\eta_i = \log[-\log(p_i)] \).

(b) The predicted probability of murder in 1960 is
\[
p_0 = \frac{e^{-0.9814}}{1 + e^{-0.9814}} = 0.2726,
\]
and the predicted probability of murder in 2000 is
\[
p_{40} = \frac{e^{-0.9814 - 40 \times 0.0175}}{1 + e^{-0.9814 - 40 \times 0.0175}} = 0.1569.
\]

(c) The odds ratio is
\[
\hat{\theta} = e^{-40 \times 0.0175} = 0.4966.
\]
The \(p \)-value of the odds ratio is less than \(2 \times 10^{-16} \).

(d) The 95\% confidence interval of the mean rate in 1960 is
\[
[0.00004413 - 2.0337 \times 0.000003765, 0.00004413 + 2.0227 \times 0.000003765] = [0.00003647, 0.00005175].
\]
The variance in 2000 is
\[
0.000003765^2 - 2 \times 40 \times 0.8608 \times 0.000003765 \times 0.0000001581
\]
\[+40^2 \times 0.0000001581^2 = 0.00000363^2.\]
The mean in 2000 is
\[
0.00004413 + 40 \times 0.0000008432 = 0.00007786.
\]
Thus, the 95\% confidence interval is
\[
[0.00007786 - 1.96 \times 0.00000363, 0.00007786 + 1.96 \times 0.00000363] = [0.00007075, 0.00008497].
\]

(e) From 1960 to 2000, the percentage of murder in a crime decreases from 27.26\% to 15.69\%, but the rate of murder is still increasing from 0.00004413 to 0.0000786. This happens because the rate of other types of crimes increases much faster than that of murder.
2. (a) The loglikelihood is

\[L = -\frac{N}{2} \log(2\pi) - \frac{N}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N}(y_i - x_i^t\beta)^2 \]

and

\[\sum_{i=1}^{N} \text{Cov}(\hat{y}_i, y_i) = (N - d)\sigma^2. \]

Note that the MLE are \(\hat{y}_i = x_i^t\hat{\beta} \) and \(\hat{\sigma}^2 = \frac{\sum_{i=1}^{N}(y_i - \hat{y}_i)^2}{N} \). We have

\[AIC = N\log(2\pi) + \frac{1}{\hat{\sigma}^2} \sum_{i=1}^{N}(y_i - \hat{y}_i)^2 + N\log(\hat{\sigma}^2) + 2d \]

\[= \text{Constant} + 2d + N\log(\hat{\sigma}^2) \]

\[= \text{Constant} + 2d + N\log \frac{\text{RSS}}{N}, \]

where \(\text{RSS} \) is the residual sum of squares.

(b) (Omitted).

(c) The AIC for the full model is \(-7.77\), and for the reduce models are \(13.30, -8.85\) and \(2.54\) respectively. Thus, we choose the second reduce model. It gives RSS equal to \(2.764712\) and this is the \(\sigma^2\) the full model be preferred.

3. (a) The design matrix, an \(80 \times 4\) matrix is

\[
X = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 2 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 40 & 1 & 40 \\
1 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 40 & 0 & 0
\end{pmatrix}
\]

Let \(\beta = (\mu, \alpha, \gamma, (\alpha\gamma)) \). The constraint is the values of Where and interaction are 0 if it is from New Mexico. Then, the expression is

\[Y = X\beta + \epsilon, \quad \epsilon \sim N(0, \sigma^2I_{80}) \]

The fit is good because the \(R^2 = 0.9245\) is close to one.

(b) The estimated trend for New Mexico is

\[\mu = 13.15385 - 0.23616 \text{year} \]
and the predicted trend for US is
\[\mu = 13.15385 - 4.41692 - (0.23616 - 0.07778)\text{year} = 8.73693 - 0.15838\text{year}. \]

Solve the equation
\[13.15385 - 0.23616\text{year} = 8.73693 - 0.15838\text{year} \Rightarrow \text{year} = 56.79 \approx 57. \]

Thus, in the year 56 + 1945 = 2001, the rate is expected close.

(c) The null hypothesis is \(H_0 : \alpha = \gamma = (\alpha \gamma) = 0. \)

(d) The predicted values are
\[13.15385 - 0.23616 \times 20 = 8.43065 \]

for New Mexico and
\[8.73693 - 0.15838 \times 20 = 5.56933. \]

(e) No, because the interaction effect is included in the model.

4. (a) We first find the region of \(\theta_0, C(\theta_0), \) based on the fact given by
\[\frac{p}{n - p} F_{1-p,\alpha,n-p} \leq \frac{S(\theta) - S(\hat{\theta})}{S(\theta)} \leq \frac{p}{n - p} F_{1-p,\alpha,n-p}. \]

We get
\[C(\theta) = \{ \theta : S(\hat{\theta})[1 + \frac{p}{n - p} F_{1-p,\alpha,n-p}] \leq S(\theta) \leq S(\hat{\theta})[1 + \frac{p}{n - p} F_{1-p,\alpha,n-p}] \}. \]

Second, we get the predicted region of \(\gamma \) by
\[C(\gamma) = \{ \gamma : \gamma = f(x_0, \gamma), \theta \in C(\theta) \}. \]

Then, we have the confidence prediction region as
\[C_\gamma(y) = \{ y : y = f(x_0, \gamma) \pm 1.96\hat{\sigma}, \theta \in C(\theta) \}, \]

where
\[\hat{\sigma}^2 = \frac{1}{n - p} \sum [y_i - f(x_i, \hat{\theta})]^2. \]

(b) The plot can not tell us which one is better since it is based on the log-scale of the survival function.
5. (a)

\[S(24) = (1 - \frac{1}{11})(1 - \frac{1}{10})(1 - \frac{6}{7}) = 0.7012. \]

We use the formula

\[V(\hat{S}(t)) = \hat{S}(t)^2 \sum \frac{d_i}{r_i(r_i - d_i)} \]

where \(d_i \) is the death and \(r_i \) is the at risk population at time \(i \). Thus, we have

\[V(\hat{S}(24)) = 0.7012^2 \left[\frac{1}{11(11 - 1)} + \frac{1}{10(10 - 9)} + \frac{1}{7(7 - 1)} \right] = 0.02164. \]

The standard deviation is \(0.02164^{0.5} = 0.1470 \).

(b) For this case, \(h(t) = 2t/\theta^2 \) and \(S(t) = e^{-t^2/\theta^2} \). The loglikelihood function is

\[
\ell = \log \prod_{i=1}^{n} [h(t_i)]^{\delta_i} [S(t_i)] \\
= \sum_{i=1}^{n} \delta_i \log(2t_i) - \sum_{i=1}^{n} 2\delta_i \log(\theta) - \sum_{i=1}^{n} \frac{t_i^2}{\theta^2}.
\]

It gives

\[\hat{\theta} = \left[\frac{\sum_{i=1}^{n} t_i^2}{\sum_{i=1}^{n} \delta_i} \right]^{1/2} = 50.86. \]

The Fisher Information is

\[I(\theta) = \frac{2\sum_{i=1}^{n} \delta_i}{\theta^2} + \frac{6\sum_{i=1}^{n} t_i^2}{\theta^4} \Rightarrow \frac{1}{I(\theta)} = 46.19 \]

indicating \(\sigma(\hat{\theta}) = 46.19^{1/2} = 6.796 \).

6. (a) For \(S_1 \), the counts are 676 + 569 = 1245, 656 + 557 = 1213, 93 + 153 = 246 and 151 + 127 = 278 respectively. The odds ratio is

\[\hat{\theta}_1 = \frac{1245}{1213} = 1.1599 \]

and the standard error of \(\log(\theta) \) is

\[\sigma(\log(\hat{\theta}_1)) = \frac{1}{1245} + \frac{1}{1213} + \frac{1}{246} + \frac{1}{278} = 0.00929. \]

Since

\[\frac{\left| \log(1.1599) \right|}{\sqrt{0.00929}} = 1.54 < 1.96. \]

The IQ and \(S_1 \) are marginal independent. Similarly, for \(S_2 \), we have

\[\hat{\theta}_2 = \frac{(769)(684)}{(807)(722)} = 0.9028. \]
and
\[V(\log(\hat{\theta}_2)) = \frac{1}{769} + \frac{1}{807} + \frac{1}{722} + \frac{1}{684} = 0.00539. \]

Note that
\[\frac{|\log(0.9028)|}{\sqrt{0.00539}} = 1.39 < 1.96. \]

We still conclude \(S_2 \) and IQ are marginal independent.

(b) For IQ low, we have
\[\hat{\theta}_1 = \frac{(676)(153)}{(569)(94)} = 1.934 \]

and
\[\sigma(\log(\hat{\theta}_1)) = \frac{1}{676} + \frac{1}{153} + \frac{1}{569} + \frac{1}{94} = 0.01235. \]

Since
\[\frac{|\log(1.934)|}{\sqrt{0.01235}} = 5.94, \]

we conclude that \(S_1 \) and \(S_2 \) are significantly not independent for Low IQ. Similarly, we have
\[\hat{\theta}_2 = \frac{(656)(127)}{(557)(151)} = 0.9905. \]

and
\[\sigma(\log(\hat{\theta}_1)) = \frac{1}{656} + \frac{1}{557} + \frac{1}{151} + \frac{1}{127} = 0.0178. \]

Since
\[\frac{|\log(0.9905)|}{\sqrt{0.0178}} = 0.07, \]

we conclude that in high IQ group, \(S_1 \) and \(S_2 \) are almost independent.

(c) The data indicates that \(S_1 \) and \(S_2 \) are both high and both low are more likely that one is high and one is low. We can also say that the risk for \(S_1 \) to be low when \(S_2 \) is low is about 30% righ than when \(S_2 \) is high marginal. For IQ low, it becomes about 90%.

7. (a) The ANOVA table is

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug A</td>
<td>1</td>
<td>15</td>
<td>15</td>
<td>7.69</td>
</tr>
<tr>
<td>Drug B</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>5.13</td>
</tr>
<tr>
<td>A*B</td>
<td>1</td>
<td>5.5</td>
<td>5.5</td>
<td>2.82</td>
</tr>
<tr>
<td>Gender</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>5.13</td>
</tr>
<tr>
<td>Day</td>
<td>7</td>
<td>36</td>
<td>5.14</td>
<td>2.63</td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>39</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>115.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(b) If Day is a random effect, then the F-value of day is still 2.63. Since $F_{0.05,7,20} = 2.51$. The day effect is insignificant. For Gender, drug interaction effect, the p-values are 1.41 and 0.77 respectively. Thus, Gender and drug interaction are not significant.

(c) Let σ^2 be the variance of the error term and let σ_d^2 be the variance of the day effect. Note that

$$V(\hat{Y}) = \frac{\hat{\sigma}_d^2}{8} + \frac{\hat{\sigma}^2}{20}.$$

Thus, its 95% confidence interval is

$$[10 - t_{0.025,7}(\frac{5.14}{8} + \frac{1.95}{20})^{1/2}, 10 + t_{0.025,7}(\frac{5.14}{8} + \frac{1.95}{20})^{1/2}] = [7.97, 12.03].$$