Tonglin Zhang
Welcome to my home page. I'm very glad that you made it this far.
Personal Link
Contents
Education
 09/198707/1991:
 Department Mathematics,
Peking University
B.S. in Mathematics
 09/199107/1994:
 Department of Probability and
Statistics,
Peking University
M.S. in Statistics
 09/199805/2002:

Department of Statistics, University of Michigan
Ph.D. in Statistics
 08/2002:

Department of Statistics, Purdue University
Faculty: Assistant Professor(08/200207/2009); Associate Professor (082009)
Research Works
 Research Interests:
 Big Data.
 Spatial Epidemiology.
 Point Processes.
 Geostatistics for large data.
 Problems in restricted parameter.
 Weak Signal Detection.
 Mathematical Statistics.
 Publications:
 Zhang, T. and Zhang, H.(2017). NonFully symmetric spacetime matern covariance functions, manuscript.
 Fang, H., Yang, B., and Zhang, T. (2017). Finding the best BoxCox transformation from massive datasets on Spark. Proceeding of the IEEE International Conference on Big Data, accepted.
 Zhang, T. and Yang, B.(2017). Dimension reduction for big data. Statistics and Its Interface, to appear.
 Zhang, T. and Huang, Y. (2017). Gradient anglebased analysis for spatiotemporal point processes. Electronic Journal of Statistics, 11, 44244451.
 Gao, Y., Zhang, T., and Yang, B. (2017). Finding the best BoxCox transformation in big data with metamodel learning: a case study on QCT developer cloud. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), Page 3134, June 2628, 2016, New York. DOI: 10.1109/CSCloud.2017.53
 Zhang, T. and Yang, B.(2017). An exact approach to ridge regression for big data. Computational Statistics, 32, 909928.
 Zhang, T. and Yang, B.(2017). BoxCox transformation in big data. Technometrics, 59, 189201.
 Zhang, T.(2017). On independence and separability between points and marks of marked point processes. Statistica Sinica, 27, 207227.
 Zhang, T. and Zhuang, R. (2017).Testing proportionality between the firstorder intensity functions of spatial point processes, Journal of Multivariate Statistics, 155, 7282.
 Zhang, T. and Lin G. (2017). Asymptotic properties of spatial scan statistics under the alternative hypothesis. Bernoulli, 23, 89109.
 Zhang. T.(2017). An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics. Statistics and Probability Letters, 120, 103113.
 Zhang, T. and Yang, B.(2016) Big data dimension reduction using PCA. Proceeding of IEEE International Conference on Smart Cloud (SmartCloud), 152157, November 1820, 2016, New York, DOI: 10.1109/SmartCloud.2016.33
 Yang, B. and Zhang, T. (2016) A scalable feature selection and model updating approach for big data machine learning. Proceeding of IEEE International Conference on Smart Cloud (SmartCloud), 146151, November 1820, 2016, New York, DOI: 10.1109/SmartCloud.2016.32
 Wang, J., Zhang, T., and Fu, B. (2016). A measure of spatial stratified heterogeneity. Ecological Indicators, 67, 250256.
 Jin, Z., Zhuang, Q., Dukes J.S., He, J.S., Sokolov, A.P., Chen, M., Zhang, T., Luo, T. (2016). Temporal variability in the thermal requirements for vegetation phenology on the Tibetan plateau and its implications for carbon dynamics. Climatic Change, 138, 617632.
 Yang, B. and Zhang, T. (2016). A scalable metamodel for big data security analyses. Proceeding of IEEE Big Data Security on Cloud (BigDataSecurity).
 Zhang, T. and Lin, G. (2016). On Moran's I coefficient under heterogeneity. Computational Statistics and Data Analysis, 95, 8394.
 Zhang, T., Shang, X., and Lin, G. (2015). Spatial parameterization of infant mortality in Anhui Province, China. Spatial Statistics, 14, 286302.
 Liu, Y., Pan, Z., Zhuang, Q., Mirallles, D.G., Teuling, A.J., Zhang, T., An, P., Dong, Z., Zhang, J., He, D., Wang, L., Pan, X., Bai, W., Niyogi, D. (2015). Agriculture intensifies soil moisture decline in Northern China. Nature Scientific Reports, 5, article 11261.
 Zhang, T. (2014). A KolmogorovSmirnov type test for independence between marks and points of marked point processes. Electronic Jounral of Statistics, 8, 25572584. DOI: 10.1214/14EJS961.
 Zhang, T., and Zhou, B. (2014). Test for the firstorder stationarity for spatial point processes in arbitrary regions. Journal of Agricultural, Biological and Environmental Statistics, 19, 387404.
 Zhuang, R. and Zhang, T. (2014). Hypotheses testing in CaseControl Spatial
Point Processes. Austin Statistics, 1, 19.
 Zhang, T. and Lin G. (2014). Family of power divergence spatial scan statistics. Computational Statistics and Data Analysis, 75, 162178.
 Zhang, T. and Zhuang, Q. (2014). On the local odds ratio between points and marks in marked point processes. Spatial Statistics, 9, 2037.
 Zhang, T. and Lin, G. (2013). On the limiting distribution of the spatial scan statistic. Journal of Multivariate Analysis, 122, 215225.
 Lin, G. and Zhang, T. (2012). Examining extreme weather effects on birth weight from the individual effect to spatiotemporal aggregation effects. Journal of Agriculatural, Biological, and Environmental Statistics, 17, 490507.
 Zhang, T., Zhang, Z., and Lin, G. (2012). Spatial scan statistics with overdispersion. Statistics in Medicine, 31, 762774.
 Bowen, G.J., Kennedy, C.D., Henne, P.D., Zhang, T. (2012). Footprint of recycled water subsidies downwind of Lake Michigan. Ecoshpere, 3, Article 53.
 Wan, H., Zhang, T., and Zhu, Y. (2012). Detection and localization of hidden radioactive sources with spatial statistical method.. Annals of Operation Research, 192, 87104.
 Zhang, T. (2012). Radioactive target detection with wireless sensor network. Computer, Informatics, Cybernetics and Applications. Lecture Notes in Electrical Engineering, 107, 293301.
 Zhang, T. (2011). Statistical approach to radioactive target detection and location via wireless sensor networks. IEEE Proceeding of 2011 Third International Conference on Signal Processing Systems (ICSPS 2011), August 2728, Yantai, China.
 Zhang, T. (2011). Detecting and locating radioactive signals with wireless sensor networks. ISIC, 2011, 110113. IEEE ISIC '11 Proceedings of the 2011 International Conference on Information Security and Intelligence Control, Page 110103. doi: 10.1109/ISIC.2011.26.
 Lee, H., Zhao, L., Bowen, G.J., Miller, C.C, Ajay, K., Zhang, T., and West, J. (2011). Enabling online geospatial isotopic model development and analysis. IEEE TereGrid Conference: Extreme Digital Discovery, Salt Lake City, July 1821, 2011. Doi: 10.1145/2016741.2016783.
 Zhang, T. (2010). Spatial disease surveillance: methods and applications. Frontiers in Computational and Systems Biology (ed. by Feng, J. and Sun, F.), 238300.
 Zhang, T. and Lin, G. (2009). Spatial scan statistics in loglinear models. Computational Statistics and Data Analysis, 53, 28512858.
 Zhang, T. and Lin, G. (2009). Cluster detection based on spatial associations and iterated residuals in generalized linear mixed models. Biometrics, 65,353360.
 Zhuang, Q., Zhang, T., Xiao, J. and Luo, T. (2009). Quantification of net primary production of Chinese forest ecosystems with spatial statistical approaches. Mitigation and Adaptation Strategies for Global Change, 14, 8599.
 Zhang, T. (2008). A limiting distribution of G statistics. Statistics and Probability Letters, 78, 16561661.
 Zhang, T. and Lin, G. (2008). Identification of local clusters for count data: a modelbased Moran's I test. Journal of Applied Statistics, 35, 293306.
 Zhang, T. and Lin, G. (2007). A decomposition of Moran's I for clustering detection. Computational Statistics and Data Analysis, 51, 61236137.
 Lin, G. and Zhang, T. (2007). Loglinear residual tests of Moran'I autocorrelation: an application to Kentucky breast cancer incidence data. Geographical Analysis, 39, 293310.
 DasGupta, A. and Zhang, T. (2006). On the false discovery rates of a frequentist: asymptotic expansions. IMS Lecture Notes Monograph, 50, 190212.
 Zhang, T. and Lin, G. (2006). A supplemental indicator of highvalue or lowvalue spatial clustering . Geographical Analysis, 38, 209225.
 Zhang, T. (2006). A modification for Bayesian credible intervals. Communication in Statistics, 35, 17031711.
 Zhang, T. (2006). Existence of the signal in the signal plus background model. IMS Lecture Notes Monograph, 50, 144155.
 DasGupta, A. and Zhang, T. (2005). Inference for binomial and multinomial parameters. As a chapter of the book Encyclopedia of Statistical Sciences, 2nd edition, edited by Drs. N. Balakrishman and Campbell B. Read and Brani Vidakovic, published by Wiley.
 Zhang. T. and Woodroofe, M. (2005). Admissible minimax prediction of the signal with known background. Statistica Sinica, 15, 5972.
 Lin, G. and Zhang, T. (2004). A method for testing lowvalue spatial clustering for rare diseases . Acta Tropica, 91, 279289.
 Zhang, T. and Woodroofe. M. (2003). Credible and confidence sets for restricted parameter spaces. Journal of Statistical Planning and Inference, 115, Page 479490.
 Zhang. T. and Woodroofe, M. (2002). Credible and confidence sets for the ratio of variance components in the balanced oneway model . Sankhya, 64, Page 545560.
 Woodroofe, M. and Zhang, T. (2002). Discussion of ``Setting confidence intervals for bounded parameters'', by Mark Mandelkern. Statistical Science, 17, Page 168171.
Teaching Sections
STAT 417, Section 2: Statistical Theory, Spring 2018.
Stat 526: Advanced Statistical Methodology, Spring 2018.

How to contact me?

Department of Statistics

Purdue University

250 North University Street, 172
 West Lafayette, IN 479072066
 Tel: (765)4962097

tlzhang@purdue.edu