Count Response

STAT 526
Professor Olga Vitek

March 31, 2011
Basic Poisson Regression
(Faraway Ch. 3)
Poisson Distribution

• \(Y \): Counts of events that occur randomly over fixed interval of time or space

 – No upper limit for the number of events

 – Approximates \(Binomial(n, \pi) \) distribution when \(n \) is large and \(\pi \) is small. Then \(\lambda = n\pi \).

 – Approaches Normality as \(\lambda \) increases

• \(P\{Y = y\} = \frac{e^{-\lambda}\lambda^y}{y!}, \ y = 1, \ldots \)

• \(E\{Y\} = Var\{Y\} = \lambda \)

• If \(Y_i \sim Poisson(\lambda_i), \ i = 1, \ldots, \)

 then \(\sum_i Y_i \sim Poisson(\sum \lambda_i) \)
Poisson(λ) for various λ

- $\lambda = 0.5$
- $\lambda = 1$
- $\lambda = 3$
- $\lambda = 6$
- $\lambda = 9$
- $\lambda = 12$
Poisson Regression

• Model

\[Y_i \overset{ind}{\sim} \text{Poisson}(\lambda_i), \text{ where } \]
\[\log \lambda_i = X_i' \beta \quad (= \eta, \text{ link}) \]

\[- \beta_j = \text{difference in } \log \text{E}\{Y\} \text{ following a unit change in predictor } X_j, \text{ while the others are constant} \]

• Log-likelihood

\[l(\beta) = \log \prod_{i=1}^{n} \left[\frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!} \right] = \sum_{i=1}^{n} \left(y_i \log \lambda_i - \lambda_i - \log y_i! \right) \]

\[= \sum_{i=1}^{n} \left(y_i X_i' \beta - \exp X_i' \beta \right) + \text{constant} \]

• Pearson \(X^2 \)

\[X^2 = \sum_{i=1}^{n} \frac{(y_i - \hat{\lambda}_i)^2}{\hat{\lambda}_i} \]

• Deviance

\[D = 2 \sum_{i=1}^{n} \left(y_i \log \frac{y_i}{\hat{\lambda}_i} - (y_i - \hat{\lambda}_i) \right) \]

- Different numeric values of deviance for grouped and ungrouped data
Inference About Individual \(\beta_j \): Wald Test

- Same as for Binomial response

- Test \(H_0 : \beta_j = 0 \) versus \(H_a : \beta_j \neq 0 \).

- Test statistic \(z^* = \frac{b_j - 0}{s\{b_j\}} \)

- **Approximate** variance \(s^2\{b\} \)

\[
s^2\{b\} = \left(\left[- \frac{\partial^2 \log_e L(\beta)}{\partial \beta_j \partial \beta_j'} \right]_{\beta=b} \right)^{-1}
\]

- **Approximate** distribution of \(z \)

 - \(z^* \sim N(0, 1) \). Alternatively, \((z^*)^2 \sim \chi^2_1 \)

 - reject \(H_0 \) if \(|z^*| > z^{1-\alpha/2} \)

 - CI for \(\beta_j \): \(b_j \pm z^{1-\alpha/2} s\{b_j\} \)
Example: Galapagos Plants
(Faraway Ch. 3)

- Study the number of plant species on 30 Galapagos islands as function of geographic variables

```r
library(faraway)
data(gala)
?gala

# faraway does not use the 2nd predictor,
# so we’ll remove it too.
gala <- gala[, -2]
head(gala)
```

<table>
<thead>
<tr>
<th>Species</th>
<th>Species</th>
<th>Area</th>
<th>Elevation</th>
<th>Nearest</th>
<th>Scruz</th>
<th>Adjacent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baltra</td>
<td>58</td>
<td>25.09</td>
<td>346</td>
<td>0.6</td>
<td>0.6</td>
<td>1.84</td>
</tr>
<tr>
<td>Bartolome</td>
<td>31</td>
<td>1.24</td>
<td>109</td>
<td>0.6</td>
<td>26.3</td>
<td>572.33</td>
</tr>
<tr>
<td>Caldwell</td>
<td>3</td>
<td>0.21</td>
<td>114</td>
<td>2.8</td>
<td>58.7</td>
<td>0.78</td>
</tr>
<tr>
<td>Champion</td>
<td>25</td>
<td>0.10</td>
<td>46</td>
<td>1.9</td>
<td>47.4</td>
<td>0.18</td>
</tr>
<tr>
<td>Coamano</td>
<td>2</td>
<td>0.05</td>
<td>77</td>
<td>1.9</td>
<td>1.9</td>
<td>903.82</td>
</tr>
<tr>
<td>Daphne.Major</td>
<td>18</td>
<td>0.34</td>
<td>119</td>
<td>8.0</td>
<td>8.0</td>
<td>1.84</td>
</tr>
</tbody>
</table>
> fit1 <- glm(Species~., family=poisson, data=gala)
> summary(fit1)

Call:
glm(formula = Species ~ ., family = poisson, data = gala)

Deviance Residuals:
 Min 1Q Median 3Q Max
-8.2752 -4.4966 -0.9443 1.9168 10.1849

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.155e+00 5.175e-02 60.963 < 2e-16 ***
 Area -5.799e-04 2.627e-05 -22.074 < 2e-16 ***
Elevation 3.541e-03 8.741e-05 40.507 < 2e-16 ***
Nearest 8.826e-03 1.821e-03 4.846 1.26e-06 ***
Scruz -5.709e-03 6.256e-04 -9.126 < 2e-16 ***
Adjacent -6.630e-04 2.933e-05 -22.608 < 2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 716.85 on 24 degrees of freedom
AIC: 889.68
Model Diagnostics
(Faraway Sec. 6.4)
Goodness of Fit Tests

- Residual Deviance
 - Test H_0: our model vs H_a: saturated model
 - Distribution poorly approximated by χ^2

  ```r
  > pchisq(fit1$deviance,
        fit1$df.residual,lower.tail=FALSE)
  [1] 7.073157e-136  # reject H0
  ```

- Pearson X^2
 - Test H_0: our model vs H_a: saturated model
 - Distribution better approximated by χ^2

  ```r
  > pchisq( sum(residuals(fit1, type="pearson")^2 ),
            fit1$df.residual, lower.tail=FALSE)
  [1] 2.18719e-145  # reject H0
  ```

- Better approximation of χ^2 when Poisson approaches Normal
- Can look more into model diagnostics to find possible reasons for poor fit
Model Diagnostics: Residual Plots

- Response residuals $r_i = y_i - \hat{\lambda}_i$
 - Of limited use: variance is function of the expected value

- Pearson residuals $r_{i,P} = \frac{y_i - \hat{\lambda}_i}{\sqrt{\hat{\lambda}_i}}$
 - $\sum_i r_{i,P}^2 = X^2$
 - Account for differences in variance

- Deviance residuals

 $r_{i,D} = \text{sign}(y_i - \hat{\lambda}_i) \left[2(y_i \log \frac{y_i}{\hat{\lambda}_i} - (y_i - \hat{\lambda}_i)) \right]^{1/2}$

 - Defined by analogy with Pearson residuals
 - Define $d_i = 2(y_i \log \frac{y_i}{\hat{\lambda}_i} - (y_i - \hat{\lambda}_i))$, such that

 $\sum_i r_{i,D}^2 = \sum_i d_i = \text{Deviance}$

 - Account for differences in variance
Residual Plots (Next Slide)

(a) As in linear regression, can plot response residuals r_i vs $E\{Y_i\} = \hat{\lambda}_i$

\[
\text{plot(residuals(fit1, type="response") ~ predict(fit1, type="response"),}
\]
\[
\quad \text{xlab=expression(hat(lambda)),}
\]
\[
\quad \text{ylab="Response residuals", main="(a)"}
\]
\[
\text{abline(h=0)}
\]

– Of limited use:
 Variance is function of the expected value;
 Most predicted expected values are small

(b) Plot response residuals r_i vs link $\hat{\eta} = X\hat{\beta}$

\[
\text{plot(residuals(fit1, type="response") ~ predict(fit1, type="link"),}
\]
\[
\quad \text{xlab=expression(paste(hat(eta), " = X", hat(beta))),}
\]
\[
\quad \text{ylab="Response residuals", main="(b)"}
\]
\[
\text{abline(h=0)}
\]

– The points on x axis are better separated
 Variance still function of the expected value
Residual Plots (Next Slide)

(c) Plot deviance residuals $r_{i,D}$ vs link $\hat{\eta} = X\hat{\beta}$

```r
plot(residuals(fit1) ~ predict(fit1, type="link"), 
     xlab=expression(paste(hat(eta), " = X", hat(betta))), 
     ylab="Deviance residuals", main="(c)")
abline(h=0)
```

(d) Plot Pearson residuals $r_{i,P}$ vs link $\hat{\eta} = X\hat{\beta}$

```r
plot(residuals(fit1, type="pearson") ~ predict(fit1, type="link"), 
     xlab=expression(paste(hat(eta), " = X", hat(betta))), 
     ylab="Pearson residuals", main="(d)")
abline(h=0)
```

• Interpretation of (c) and (d):
 – Y axis accounts for differences in variance
 – X axis better separates the predicted values
 – Systematic nonlinear relationship → lack of fit
 * No apparent problems for this dataset
 – Large/nonconstant variance → violations of the assumed Poisson distribution
 * Potential overdispersion
Residual Plots

- No obvious problematic trends in (c) or (d)
Model Diagnostics: Functional Form of Predictors

- As in linear regression, can plot Y against each predictor X_j

 scatter.smooth(gala$Area, gala$Species)
 scatter.smooth(gala$Elevation, gala$Species)
 scatter.smooth(gala$Nearest, gala$Species)
 scatter.smooth(gala$Scruz, gala$Species)

- The plots are of limited use, and may not show clear trends:
 - Lower response conts are more frequent
 - $\text{Var}\{Y\} = E\{Y\} \rightarrow$ large Y are unreliable

- Transformations can be helpful
 - Look for transformations for predictors even if there is no obvious problems in residual plots
Plotting Y vs X_j

- Most predictors indicate some non-linearity
Consider $log(Area)$

(a) $Area$ vs $Species$
plot(gala$Area, gala$Species, main="(a)"

(b) Use $log(Area)$
scatter.smooth(log(gala$Area), gala$Species, main="(b)"

(c) Account for the log link:
$log(Area)$ vs $Species$
scatter.smooth(log(gala$Area), log(gala$Species), main="(c)"

(d) Faraway suggests plotting linearized response:
$Z_i = X_i\hat{\beta} + (Y_i - \hat{\lambda})/\hat{\lambda}$

lambda<- predict(fit1, type="response"
Z <- predict(fit1) + (gala$Species-lambda)/lambda
scatter.smooth(log(gala$Area), z, ylab="Linearlized response", main="(d)"

• log and the linearized response are similar
Consider $\log(Area)$

- Log transformation appears appropriate
Residuals of Original and Log-Transformed Predictors

- Apply log transform to all predictors

\[
\text{fit2} \leftarrow \text{glm(Species} \sim \text{log(Area)+log(Elevation)+log(Nearest)+log(Scruz+0.1)+log(Adjacent),}
\]
\[
\text{family=poisson, data=gala)}
\]

\[
\text{anova(fit1, fit2)}
\]

Analysis of Deviance Table

Model 1: Species \sim Area + Elevation + Nearest + Scruz + Adjacent
Model 2: Species \sim log(Area) + log(Elevation) + log(Nearest) + log(Scruz + 0.1) + log(Adjacent)

<table>
<thead>
<tr>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>716.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>359.12</td>
<td>0</td>
<td>357.72</td>
</tr>
</tbody>
</table>

- obtain a substantial reduction in deviance
- the model with all the transformed predictors yields a better overall fit
- Next: visualize the change in plots of response and deviance residuals
Residuals of Original and Log-Transformed Predictors

- More compact residuals after the transform
Model Diagnostics: Partial Residuals and Link

(a) Partial contribution of a predictor:
Plot \(Z_i - X_i'\hat{\beta} + X_{ij}\hat{\beta}_j \) vs \(X_j \)

```r
lambda <- predict(fit2, type="response")
u <- (gala$Species-lambda)/lambda +
    coef(fit2)[2]*log(gala$Area)
scatter.smooth(log(gala$Area), u,
    ylab="Partial residual", main="Partial residuals")
```

(b) Choice of link function:
Plot \(Z_i \) vs \(X_i'\hat{\beta} \)

```r
z <- predict(fit2) + (gala$Species-lambda)/lambda
scatter.smooth(predict(fit2), z,
    ylab="Linearlized response",
    main="Diagnostics for link")
```

- No major problems in this dataset
 - Points roughly forming straight lines indicate no gross departures from the assumptions
 - Possible two outliers
Model Diagnostics: Partial Residuals and Link

- No major problems in this dataset
 - Points roughly forming straight lines indicate no gross departures from the assumptions
 - Two potential outliers
Model Diagnostics: Outliers

• Same concepts as in linear and logistic regression

• Automated plots in R (next slide)

 for (i in 1:4)
 plot(fit2, which=i)

• Manual plots in R (following slide)

 halfnorm(rstudent(fit2),
 main="Half-normal qqplot of Jacknife residuals")

 halfnorm(influence(fit2)$hat,
 main="Half-normal qqplot of leverages")

 halfnorm(cooks.distance(fit2),
 main="Half-normal qqplot of Cook’s distance")

 plot(influence(fit2)$coef[,5], xlab="Obs.No",
 ylab="dBeta",
 main="Change in Scruz coef after deletion")
Diagnostics: Outliers

- 'Residuals' = deviance residuals;
- 'Predicted values' = \(X_i \hat{\beta} \);
- 'Std. deviance resid' = \(r_{SD} = \frac{r_D}{\sqrt{\hat{\phi}(1-h_{ii})}} \) (p. 124);
- 'Cook's distance' (p. 125).
• #25 = 'Scruz'. The influence can be due to adding 0.1 at the log transform.
Overdispersion
(Faraway Ch. 3)
Overdispersion

• Suppose $Y \sim Poisson(\lambda)$
 – as for Binomial response, overdispersion arises
 in case of hierarchical or clustered observations

• Suppose λ itself is a r.v. with $E\{\lambda\} = \theta$.
 – $E\{Y\} = E\{E\{Y|\lambda\}\} = \theta$
 – $Var\{Y\} = E\{Var\{Y|\lambda\}\} + Var\{E\{Y|\lambda\}\}$
 $= \theta + Var\{\lambda\} > \theta$

• Quasipoisson distribution
 – $E\{Y\} = \lambda$
 – $Var\{Y\} = \phi \lambda$
 – Can estimate $\hat{\phi}$: $\hat{\phi} = \frac{1}{n-p} X^2 = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(y_i - \hat{\lambda}_i)^2}{\hat{\lambda}_i}$

• Comparing nested models in presence of
 overdispersion:
 – Test H_0 : reduced model vs H_a : full model
 – $F = \frac{(D_0 - D_1)/(df_0 - df_1)}{\hat{\phi}_1} \overset{approx.}{\sim} F(df_0 - df_1, df_1)$
Example: Galapagos Plants

- Fit a simplified model with 2 predictors

```r
> fit3 <- glm(Species~ log(Area)+log(Adjacent),
   family=poisson, data=gala)
```

Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | 3.276683 | 0.044132 | 74.25 | <2e-16 *** |
| log(Area) | 0.375029 | 0.008023 | 46.74 | <2e-16 *** |
| log(Adjacent) | -0.095747| 0.006118 | -15.65 | <2e-16 *** |

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 395.54 on 27 degrees of freedom
AIC: 562.37

- Log-log plot of mean vs variance (next slide)

```r
lambda <- predict(fit3, type="response")
plot(log(lambda),
    log((gala$Species -lambda)^2),
    xlab=expression(hat(lambda)),
    ylab=expression((y - hat(lambda))^2))
abline(0,1)
```
Diagnostics: Overdispersion

- X axis: \(\log(E\{Y\}) \) of each observation
- Y axis: \(\log(\text{Var}\{Y\}) \) of each observation
- The variance is increasing with the mean
- The variance is larger than the mean
 \(\rightarrow \) indicates overdispersion

\[
\log((y - \hat{\lambda})^2) = \log(\lambda^2) + \log(\hat{\lambda})
\]

6-28
Account for Overdispersion

- Estimate the dispersion parameter

  ```
  > sum(residuals(fit3, type="pearson")^2) / fit3$df.res
  [1] 16.52745  # >> 1, i.e. overdispersion present
  ```

- Quasipoisson model

  ```
  > summary(glm(Species~ log(Area)+log(Adjacent),
  family=quasipoisson, data=gala))
  ```

 Coefficients:

 | Estimate | Std. Error | t value | Pr(>|t|) |
 |----------|------------|---------|-----------|
 | (Intercept) | 3.27668 | 0.17942 | 18.26 | < 2e-16 *** |
 | log(Area) | 0.37503 | 0.03262 | 11.50 | 6.56e-12 *** |
 | log(Adjacent) | -0.09575 | 0.02487 | -3.85 | 0.000658 *** |
 ...

 (Dispersion parameter for quasipoisson family taken to be 16.52745)

 Null deviance: 3510.73 on 29 degrees of freedom
 Residual deviance: 395.54 on 27 degrees of freedom
 AIC: NA

- Same parameters, larger SE, weaker significance
Rate Models
(Faraway Ch. 3)
Motivation

• Each Y_i can represent a different interval in space or time
 – # of crimes in cities of different size
 – # of customers served by workers who work different hours
 – # cars running red light in different intersections

• Modeling Y_i as Poisson response is often more appropriate than Binomial
 – counts can be small as compared to the total (crimes)
 – the total may not be a count (workers, intersections)

• Goal: express a common effect of covariates on all Y_i, while accounting for differences in 'exposure'
 – 'exposure' needs to be a defined variable
Formulation

• Model Y_i as

\[Y_i \sim \text{Poisson}(\lambda_i), \quad \lambda_i = \text{exposure}_i e^{x_i'\beta}, \]

\[\text{i.e. } \log(\lambda_i) = \log(\text{exposure}_i) + x_i'\beta \]

• The model is equivalent to using \textit{exposure} as a predictor with the coefficient=1

 – \textit{exposure} is often called an \textit{offset} in this context
Example: Gamma Radiation (Faraway Sec. 3.2)

- Effect of gamma radiation on the numbers of chromosomal abnormalities (ca) in cells

- Different number of cells (cells, in hundreds) exposed to a dose and a rate of radiation

- cells can be viewed as 'exposure' variable

library(faraway)
data(dicentric)
?dicentricic

> head(dicentric)
cells ca doseamt doserate
1 478 25 1 0.10
2 1907 102 1 0.25
3 2258 149 1 0.50
4 2329 160 1 1.00
5 1238 75 1 1.50
6 1491 100 1 2.00
Visualize the data

- Interaction plot: proportion of cells with abnormality
 - The effect of dose rate is multiplicative

```R
> with(dicentric, 
  interaction.plot(doseamt, doserate, ca/cells))
```
Model Without Offset

> # indicate that 'dose' is categorical:
> dicentric$doseF <- factor(dicentric$doseamt)

> # the total number of cells as an independent predictor
> fit4 <- glm(ca ~ log(cells) + log(doserate)*doseF,
> family=poisson, data=dicentric)

...
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.76534 0.38116 -7.255 4.02e-13 ***
log(cells) 1.00252 0.05137 19.517 < 2e-16 ***
log(doserate) 0.07200 0.03547 2.030 0.042403 *
doseF2.5 1.62984 0.10273 15.866 < 2e-16 ***
doseF5 2.76673 0.12287 22.517 < 2e-16 ***
log(doserate):doseF2.5 0.16111 0.04837 3.331 7.03e-06 ***
log(doserate):doseF5 0.19316 0.04299 4.493 7.03e-06 ***
...

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 916.127 on 26 degrees of freedom
 Residual deviance: 21.748 on 20 degrees of freedom
 AIC: 211.15

• The coefficient of log(cells) is close to 1, and the offset is appropriate
Model With Offset

> fit5 <- glm(ca ~ offset(log(cells)) + log(doserate)*doseF,
 family=poisson, data=dicentric)

...

Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|------------|----------|------------|---------|----------|
| (Intercept)| -2.74671 | 0.03426 | -80.165 | < 2e-16 *** |
| log(doserate) | 0.07178 | 0.03518 | 2.041 | 0.041299 * |
| doseF2.5 | 1.62542 | 0.04946 | 32.863 | < 2e-16 *** |
| doseF5 | 2.76109 | 0.04349 | 63.491 | < 2e-16 *** |
| log(doserate):doseF2.5 | 0.16122 | 0.04830 | 3.338 | 0.000844 *** |
| log(doserate):doseF5 | 0.19350 | 0.04243 | 4.561 | 5.1e-06 *** |

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4753.00 on 26 degrees of freedom
Residual deviance: 21.75 on 21 degrees of freedom
AIC: 209.16

- The coefficients did not change much from the previous model.
- Good residual deviance, no evidence of overdispersion.
Grouped vs Ungrouped Data

- Since $Y_i^{\text{ind}} \sim \text{Poisson}(\lambda_i), \ i = 1, \ldots,$

 $\rightarrow \sum_i Y_i \sim \text{Poisson}(\sum_i \lambda_i),$

 we can model aggregate data

 - as in Binomial or Multinomial response, log-likelihood only involves sums of y_i with same covariate patterns

 - e.g. add total cells and counts of abnormalities for entries with same doseamt and doserate

- Rate models: individual vs grouped

 - different deviances

 - same parameter estimates

 - same comparison of nested models

- Models with no offset: indiv. vs grouped

 - different deviances

 - same parameters except intercept

 - same comparison of nested models
Allowing for Extra Variation:

Negative Binomial

(Faraway Sec. 3.3)
Negative Binomial: Distribution

- Independent trials with \(P\{\text{success}\} = p \)
 - \(Z = \) the number of trials until \(k \)th success
 - \(Z \sim \text{NB}(p, k), \; Z = k, k+1, \ldots \)

- Probability distribution
 - \(P\{Z = z\} = \binom{z-1}{k-1} p^k (1-p)^z \)
 - \(E\{Z\} = \frac{k}{p} \)
 - \(Var\{Z\} = \frac{k(1-p)}{p^2} \)

- Obtained as the marginal distribution of \(Y|\lambda \sim \text{Poisson}(\lambda) \) where \(\lambda \sim \text{G}(k, \alpha) \)
 - \(P\{Y = y\} = \frac{1}{y!} \lambda^y e^{-\lambda}, \; Y = 0, 1, \ldots \)
 - \(f(\lambda) = \frac{\alpha^k}{\Gamma(k)} \lambda^{k-1} e^{-\alpha\lambda}, \; \lambda > 0 \)
Negative Binomial: Genesis

• Suppose \(Y|\lambda \sim \text{Poisson}(\lambda), \lambda \sim G(k, \alpha) \)

 – Joint distribution of \(Y \) and \(\lambda \):

 \[
p(Y = y, \lambda) = \frac{\alpha^k}{\Gamma(k)} \frac{\lambda^{y+k-1} e^{-(\alpha+1)\lambda}}{y!}
 \]

 – Marginal distribution of \(Y \) (by integrating \(\lambda \)):

 \[
p(Y = y) = \frac{\alpha^k}{\Gamma(k)} \Gamma(k) \int_0^\infty \frac{\lambda^{y+k-1} e^{-(\alpha+1)\lambda}}{y!} d\lambda
 \]

 \[
 = \frac{\alpha^k}{\Gamma(k)} \frac{\Gamma(y + k)}{\Gamma(y + 1)(\alpha + 1)^{y+k}} \Gamma(y + 1)
 \]

 \[
 = \frac{(y + k - 1)!}{(k - 1)!y!} \left(\frac{\alpha}{\alpha + 1} \right)^k \left(\frac{1}{\alpha + 1} \right)^y
 \]

 \[
 = \binom{y + k - 1}{k - 1} \left(\frac{\alpha}{\alpha + 1} \right)^k \left(\frac{1}{\alpha + 1} \right)^y
 \]

• \(\Rightarrow \) \(Z = Y + k \sim NB\left(\frac{\alpha}{\alpha + 1}, k\right), \ Y = 0, 1, \ldots \)
Negative Binomial: Model

- \(Y + k \sim NB(\frac{\alpha}{\alpha+1}, k) \), \(Y = 0, 1, \ldots \)

 \[
 - E\{Y\} = E\{Y + k\} - k = \frac{k}{\alpha/(\alpha+1)} - k = \frac{k}{\alpha} \quad (\text{denote } = \mu)
 \]

 \[
 - Var\{Y\} = Var\{Y + k\} = \frac{k(1-\alpha/(\alpha+1))}{\alpha^2/(\alpha+1)^2} = \frac{k}{\alpha} + \frac{k}{\alpha^2}
 = \mu + \mu^2/k \quad (= \text{Poisson variance + extra component})
 \]

- Log-likelihood of \(y_1, \ldots, y_n \)

 \[
 \sum_{i=1}^{n} \left(y_i \log \frac{1}{\alpha_i + 1} + k \log \frac{\alpha_i}{\alpha_i + 1} \right) + \text{constant}
 \]

 \[
 \overset{k/\alpha = \mu}{=} \sum_{i=1}^{n} \left(y_i \log \frac{\mu_i}{k + \mu_i} + k \log \frac{1}{k + \mu_i} \right) + \text{constant}
 \]

 - Can model \(\log \frac{\mu_i}{k + \mu_i} = x_i' \beta \)

- \(k \) is usually assumed same for all \(y_i \)

 - fixed \text{ a priori}, or estimated from the data

 - assumes constant coefficient of variation of \(\lambda \):

 \[
 \sqrt{Var\{\lambda\}}/E\{\lambda\} = \frac{1}{k}
 \]
Example: Galapagos Plants

- Negative Binomial in an instance of the Exponential Family of distributions when \(k \) is fixed
- Fix \(k \), use glm.

```r
> fit.nb <- glm(Species~ log(Area)+log(Adjacent),
               family=negative.binomial(1), data=gala)
```

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------|----------|------------|---------|-----------|
| (Intercept) | 3.27257 | 0.15304 | 21.384 | < 2e-16 *** |
| log(Area) | 0.35100 | 0.03773 | 9.304 | 6.52e-10 *** |
| log(Adjacent) | -0.03204 | 0.04015 | -0.798 | 0.432 |

(Dispersion parameter for Negative Binomial(1) family taken to be 0.4650222)

Null deviance: 54.069 on 29 degrees of freedom
Residual deviance: 13.965 on 27 degrees of freedom
AIC: 292.97
Example: Galapagos Plants

• Use glm.nb, and estimate k from data

```r
> fit.nb1 <- glm.nb(Species~ log(Area)+log(Adjacent),
                 data=gala)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)  3.27777    0.14495  22.613  <2e-16 ***
 log(Area)   0.34973    0.03541   9.875  <2e-16 ***
 log(Adjacent) -0.03316   0.03737  -0.887    0.375
---
Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for Negative Binomial(2.6196)
 family taken to be 1)

Null deviance: 134.240  on 29 degrees of freedom
Residual deviance: 32.741  on 27 degrees of freedom
AIC: 284.99

Theta:  2.620
Std. Err.:  0.753
```

• Not a big difference in model fit in this example