Discrete Random Variable Examples

- **Geometric** Random Variable
- **Binomial** Random Variable
- In general, each discrete random variable is described by its pmf

\[p_X(x) = P[X = x] \]

for any \(x \in \mathcal{D} \)

- \(p_X(x) \) always satisfies
 1. \(0 \leq p_X(x) \leq 1 \)
 2. \(\sum_{x \in \mathcal{D}} p_X(x) = 1 \)

- A **support** of a discrete random variable is a set of all points in \(\mathcal{D} \) such that \(p_X(x) > 0 \)
Each of N individuals can be characterized as a success (S) or failure (F), and there are M successes in the population.

A sample of n individuals is selected without replacement in such a way that each subset of size n is equally likely to be chosen.

Let X be the number of Ss in a random sample of size n drawn from a population consisting of M Ss and $N - M$ Fs.

The probability distribution of X, called the hypergeometric distribution, is given by

$$P(X = x) = h(x; n, M, N) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}$$

In the above, $\max(0, n - N + M) \leq x \leq \min(n, M)$.
Capture-recapture model

- 5 individuals from an animal population thought to be near extinction in a certain region have been caught, tagged and released.
- Afterwards, a sample of 10 animals is selected. Let X be the number of tagged animals in the second sample.
- The parameter values are $n = 10$, $M = 5$ and $N = 25$
Capture-Recapture Models

- Denote X the number of tagged animals in the recapture sample.
- The pmf of X is

$$h(x; 10, 5, 25) = \binom{5}{x} \binom{20}{10-x} \binom{25}{10}^{-1}$$

$$P(X = 2) = h(2; 10, 5, 25) = \frac{\binom{5}{2} \binom{20}{8}}{\binom{25}{10}} = .385$$

$$P(X \leq 2) = \sum_{x=0}^{2} h(x; 10, 5, 25) = .699$$
Computation

- To compute $P(X = 2)$ use $dhyper(2, m = 5, n = 20, k = 10)$
- To compute $P(X \leq 2)$, use $phyper(2, m = 5, n = 20, k = 10)$
For X with \mathcal{D}_X consider $Y = g(X)$

- Y has the range $\mathcal{D}_Y = \{g(x) : x \in \mathcal{D}_X\}$
- The pmf of Y is

$$p_Y(y) = p_X(g^{-1}(y))$$
Example

▶ For a geometric random variable X consider $Y = X - 1$
▶ If X is the flip number on which the first head appears, $p_X(x) = p(1 - p)^{x-1}$
▶ Y is the number of failures before the first success
▶ $p_Y(y) = p_X(g^{-1}(y)) = p_X(y + 1) = p(1 - p)^x$
Example

- For $X \sim \text{Bin}(3, \frac{2}{3})$ define $Y = X^2$
- $\mathcal{D}_X = \{x : x = 0, 1, 2, 3\}$ and $\mathcal{D}_Y = \{y : y = 0, 1, 4, 9\}$
- The inverse transformation is $g^{-1}(y) = \sqrt{y}$ which is a one-to-one in this case
- $p_Y(y) = p_X(\sqrt{y})$
For a geometric random variable X, consider 1 unit gain when betting on odds and -1 when on evens.

The new variable is Y with $\mathcal{D}_Y = \{1, -1\}$.

Assume $\frac{1}{2}$;

$$p(X = 1, 3, 5, \ldots) = \sum_{x=1}^{\infty} \left(\frac{1}{2}\right)^{2x-1} = \frac{2}{3}$$

Thus, $p_Y(1) = \frac{2}{3}$ and $p_Y(-1) = \frac{1}{3}$.
We define $\mu = \mathbb{E} X = \sum_i x_i p(x_i)$ if $\sum_i |x_i| p(x_i) < \infty$

If the sample space is finite or countably infinite,

$$\mu = \sum_x x p(x) = \sum_\omega X(\omega) P(\omega)$$

where $P(\omega)$ is the probability of a sample point ω
Expectation of a function of several random variables

- Let X_1, \ldots, X_n be n discrete random variables on a common sample space Ω with a finite or a countably infinite number of sample points.
- Assume that $\sum_{\omega} |g(X_1(\omega), X_2(\omega), \ldots, X_n(\omega))| P(\omega) < \infty$.
- Define

$$
\mathbb{E}[g(X_1, X_2, \ldots, X_n)] = \sum_{\omega} g(X_1(\omega), X_2(\omega), \ldots, X_n(\omega)) P(\omega)
$$
Consider two rolls of a fair die. Let X be the number of ones and Y the number of sixes obtained.

Define $g(X, Y) = XY$; note that $\Omega = \{11, 12, 13, \ldots, 64, 65, 66\}$ and $P(\omega) = \frac{1}{36}$.

$$
\mathbb{E}(XY) = 0 \times \frac{1}{36} + \cdots = \frac{2}{36} = \frac{1}{18}
$$
Basic properties of expectations

- For a finite constant c s.t. $P(X = c) = 1$ we have $\mathbb{E} X = c$
- For X and Y on the same sample space Ω with finite expectations, if $P(X \leq Y) = 1$, we have $\mathbb{E} X \leq \mathbb{E} Y$
- If X has a finite expectation, and $P(X \geq c) = 1$, $\mathbb{E} X \geq c$; if $P(X \leq c) = 1$, $\mathbb{E} X \leq c$
Let X_1, \ldots, X_n defined on the same Ω and c_1, \ldots, c_k are any real valued constants. Then

$$
\mathbb{E} \left(\sum_{i=1}^{k} c_i X_i \right) = \sum_{i=1}^{k} c_i \mathbb{E} (X_i)
$$

If X is defined on Ω and $Y = g(X)$, and if $\mathbb{E} Y$ exists,

$$
\mathbb{E} (Y) = \sum_{\omega} Y(\omega) P(\omega) = \sum_{x} g(x) p(x)
$$
Let X_1, \ldots, X_k be independent random variables; if each expectation exists, we have

$$
\mathbb{E}(X_1X_2 \ldots X_k) = \mathbb{E}(X_1)\mathbb{E}(X_2) \cdots \mathbb{E}(X_k)
$$
Example

Let X be the sum of two rolls when a fair die is rolled twice.

Check that pmf of X is $p(2) = p(12) = \frac{1}{36}$; $p(3) = p(11) = \frac{2}{36}$ etc.

$\mathbb{E} X = 2 \frac{1}{36} + 3 \frac{2}{36} + \cdots = 7$

Alternatively, define X_1 the face on the first roll, X_2 the face on the second roll, then

$$\mathbb{E} X = \mathbb{E} (X_1 + X_2) = \mathbb{E} X_1 + \mathbb{E} X_2 = 3.5 + 3.5 = 7$$
Example

Let a fair die be rolled 10 times and X be the sum of these rolls.

The pmf is hard to write down exactly; but if X_i be the face on ith roll,

$$
\mathbb{E} X = \mathbb{E} (X_1 + X_2 + \cdots + X_{10})
$$

$$
= \mathbb{E} (X_1) + \mathbb{E} (X_2) + \cdots + \mathbb{E} (X_{10}) = 3.5 \times 10 = 35
$$
Use of indicator variables to compute expectations of discrete random variables

- Let c_1, \ldots, c_m be constants and A_1, \ldots, A_m some events
- Let X be an integer valued random variable $X = \sum_{i=1}^{m} c_i I_{A_i}$; then

$$\mathbb{E} X = \sum_{i=1}^{m} c_i P(A_i)$$

- Coin tosses - let a fair coin be tossed n times with the probability of success p
- The number of successes is $X = \sum_{i=1}^{n} I_{A_i}$ for obvious A_i
- $\mathbb{E} X = \sum_{i=1}^{m} P(A_i) = np$
Example

- The matching problem: let the number at location \(i\) be \(p(i)\); define \(X\) as the number of locations such that \(p(i) = i\).
- Again, define obvious \(A_i\) and \(X = \sum_{i=1}^{n} I_{A_i}\).
- For any \(i\), \(P(A_i) = \frac{(n-1)!}{n!} = \frac{1}{n}\).
- Thus, \(\mathbb{E} X = \sum_{i=1}^{n} P(A_i) = 1\).
Example

Let a fair die be rolled n times; X is the number of faces that never show up in these n rolls.

Let A_i be the event that ith face is missing; $X = \sum_{i=1}^{6} I_{A_i}$

For any i, $P(A_i) = \left(\frac{5}{6}\right)^n$

$\mathbb{E} X = \sum_{i=1}^{6} P(A_i) = 6 \times \left(\frac{5}{6}\right)^n$

If $n = 10$, this is about 0.97
Tail sum method

- Let X take values 0, 1, 2, \ldots. Then,

$$
\mathbb{E} X = \sum_{n=0}^{\infty} P(X > n)
$$

- Let p be the probability of success in a Bernoulli trial; how long do we wait on average for the first success?

- If X is the number of trials needed than $X > n$ means that the first n trials all resulted in tails

$$
\mathbb{E} X = \sum_{n=0}^{\infty} P(X > n) = \sum_{n=0}^{\infty} (1 - p)^n = \frac{1}{p}
$$
Example

► Suppose a couple will have children until they have one child of each sex. How many children can they expect to have?

► Let \(X \) be the childbirth at which they have a child of each sex for the first time

► If the births are independent, the probability that a childbirth is a boy is \(p \), we have

\[
P(X > n) = p^n + (1 - p)^n
\]

► Therefore,

\[
\mathbb{E} X = 2 + \sum_{n=2}^{\infty} \left[p^n + (1-p)^n \right] = 2 + \frac{p^2}{1 - p} + \frac{(1 - p)^2}{p} = \frac{1}{p(1 - p)} - 1
\]
Variance of discrete random variables

- **Variance** of X is
 \[\sigma^2 = \mathbb{E}[(X - \mu)^2] \]

- The standard deviation is $\sigma = +\sqrt{\sigma^2}$

- Possible alternative is $\mathbb{E}|X - \mu|$...can show that $\sigma \geq |X - \mu|$
Basic properties

- $\text{Var}(cX) = c^2 \text{Var}(X)$
- $\text{Var}(X + k) = \text{Var}(X)$ for any real k
- $\text{Var}(X) \geq 0; \text{Var}(X) = 0$ iff $X = \mu$ w.p.1
- $\text{Var}(X) = \mathbb{E}(X^2) - \mu^2$
Moments of a discrete random variable X

- For a positive integer $k \geq 1$ we call $\mathbb{E}(X^k)$ a **kth moment** of X.
- $\mathbb{E}(X^{-k})$ is a **kth inverse moment** of X.
- If $\mathbb{E}[|X|^3] < \infty$, the **skewness** of X is
 \[\beta = \frac{\mathbb{E}[(X - \mu)^3]}{\sigma^3} \]
 The skewness measures how symmetric the distribution if X is; e.g. for $X \sim N(0, 1)$, $\beta = 0$.
- If $\mathbb{E}[X^4] < \infty$, the **kurtosis** of X is
 \[\gamma = \frac{\mathbb{E}[(X - \mu)^4]}{\sigma^4} - 3 \]
 The kurtosis is always ≥ -2 and is equal to zero for a normal distribution; it measures how “spiky” the distribution is around its mean.
Example

Let X be the sum of two independent rolls of a fair die. We know that $\mathbb{E}(X) = 7$

$\mathbb{E}(X^2) = \frac{329}{6}$ and

$\text{Var}(X) = \mathbb{E}(X^2) - \mu^2 = \frac{329}{6} - 49 = \frac{35}{6} = 5.83$
Example: Variance in the Matching Problem

- Let X be the number of locations where match occurs when n numbers are rearranged in a random order.
- We know that $\mathbb{E}(X) = 1$ for any n; moreover, recall representation $X = \sum_{i=1}^{n} I_{A_i}$.
- Now,

$$
\mathbb{E}(X^2) = \sum_{i=1}^{n} P(A_i) + 2 \sum_{1 \leq i < j \leq n} P(A_i \cap A_j) \\
= n \times \frac{1}{n} + 2 \binom{n}{2} \frac{(n-2)!}{n!} = 1 + 1 = 2
$$

- Thus, $\text{Var}(X) = 2 - 1 = 1$ for any n.
- Think of which distribution might approximate well the number of matches...
Let X_1, \ldots, X_n be independent random variables;

\[
\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var} \left(X_i \right)
\]

As a corollary (and a very important one!), if $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$, and $\sigma^2 = \text{Var} \ X_i < \infty$,

\[
\text{Var} \left(\bar{X} \right) = \frac{\sigma^2}{n}
\]
Chebyshev’s and Markov’s inequalities

- (Chebyshev’s inequality) Let $\mathbb{E} X = \mu$ and $\text{Var} X = \sigma^2$ be finite. For any positive number k we have

$$P(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2}$$

- (Markov’s inequality) Suppose X takes only nonnegative values and $\mathbb{E} X = \mu$ is finite. If c is any positive number,

$$P(X \geq c) \leq \frac{\mu}{c}$$

- Chebyshev’s inequality is a direct consequence of Markov’s inequality
Example

- Chebyshev’s and Markov’s inequalities are rather conservative.
- Let X be the sum of two rolls of a fair die. Recall that $\mu = 7$ and $\sigma = 2.415$.
- Choose $k = 2$ in the Chebyshev’s inequality; direct calculation gives
 \[
P(|X - 7| \geq 4.830) = \frac{1}{18} = 0.056\]
- Chebyshev’s inequality gives the lower bound of $\frac{1}{4} = 0.25$.
Weak law of large numbers

- WLLN is a direct consequence of Chebyshev’s inequality
- Let X_1, \ldots, X_n be iid RV’s with $\mathbb{E} X_i = \mu$ and $\text{Var} X_i = \sigma^2 < \infty$.
- For any $\varepsilon > 0$,
 \[P(|\bar{X} - \mu| > \varepsilon) \to 0 \]
 as $n \to \infty$
- A stronger version is the strong law of large numbers (SLLN) that says that
 \[P(\lim_{n \to \infty} \bar{X} = \mu) = 1 \]
- The only conditions needed is that $\mathbb{E} |X_i|$ be finite
Truncated Distributions

- Examples: planet observations; reported car accidents
- Let X be a discrete random variable with pmf $p(x)$; let A be a fixed subset of its values
- **The distribution of X truncated to** A has the pmf

$$p_A(y) = \frac{p(y)}{P(X \in A)}$$

for any $y \in A$ and 0 if $y \notin A$

- The mean of a truncated distribution is

$$\mu_A = \frac{\sum_{y \in A} yp(y)}{\sum_{y \in A} p(y)}$$
Example

- Let \(P(X = n) = \frac{1}{2^n} \) for \(n = 1, 2, \ldots \); we only observe \(X \) if \(X \leq 5 \)
- The truncation set is \(A = \{1, 2, 3, 4, 5\} \) and
 \[
p_A(y) = \frac{(1/2)^y}{\sum_{y=1}^{5}(1/2)^y} = \frac{2^{5-y}}{31}
\]
 for \(y = 1, 2, \ldots, 5 \)
- Check that its mean is 1.71 which is less than
 \[
 \sum_{n=1}^{\infty} n \times \frac{1}{2^n} = 2
 \]
- (Chow-Studden inequality). For any RV \(X \) and finite real constants \(a \) and \(b \), let \(U = \min(X, a) \) and \(V = \max(X, b) \). Then,
 \[
 Var \,(U) \leq Var \,(X); \ Var \,(V) \leq Var \,(X)
 \]