Prof. Michael Levine

September 15, 2015
What is a random variable?

- Often, it is hard and/or impossible to enumerate the entire sample space.
- For a coin flip experiment, the sample space is \(S = \{H, T\} \).
- Define a function \(X \) s.t. \(X(T) = 0 \) and \(X(H) = 1 \).
- \(X \) maps the sample space onto the space \(D = \{0, 1\} \).
A function X that assigns to each element of $s \in S$ one and only one number $X(s) = x$ is a **random variable**.

The **space** or **range** of X is the set of real numbers $D = \{x : x = X(s), s \in S\}$.

A random variable is **discrete** if its range D is countable.

A random variable is **continuous** if its range D is an interval of real numbers.
The quality control process: we sample batteries (or any other industrially manufactured product) as it comes off the conveyor line. Let F denote the faulty and S the good one. The sample space is $S = \{S, FS, FFS, \ldots\}$. Let X be the number of batteries that is examined before the experiment stops. The, $X(S) = 1$, $X(FS) = 2$, \ldots.
Let X have the range $\mathcal{D} = \{d_1, \ldots, d_m\}$

The induced probability $p_X(d_i)$ on \mathcal{D} is

$$p_X(d_i) = P[\{s : X(s) = d_i\}]$$

for $i = 1, \ldots, m$

$p_X(d_i)$ is the **probability mass function (pmf)** of X

For any subset $D \in \mathcal{D}$ the induced probability distribution is

$$P_X(D) = \sum_{d_i \in D} p_X(d_i)$$

It is easy to verify that $P_X(D)$ is a probability on D
Example: first roll in the game of craps

- Sample space $S = \{(i, j): 1 \leq i, j \leq 6\}$ and $P[\{(i, j)\}] = \frac{1}{36}$
- The random variable is $X(i, j) = i + j$ with the range $D = \{2, 3, \ldots, 12\}$
- Easy to put together a pmf of X in the table form
- Check that e.g. for $B_1 = \{x : x = 7, 11\}$ $P_X(B_1) = \frac{2}{9}$
Continuous case

- We assume that for any \((a, b) \in \mathcal{D}\) there exists a function \(f_X(x) \geq 0\) s.t.

\[P_X[(a, b)] = P\{s \in S : a < X(s) < b\} = \int_a^b f_X(x) \, dx \]

- We also require that \(P_X(\mathcal{D}) = \int_{\mathcal{D}} f_X(x) = 1\)

- \(f_X(x)\) is a **probability density function** or pdf
Example

- Choose a *random* number from $(0, 1)$
- Sensible assumption would be
 \[P_X[(a, b)] = b - a \]
 for $0 < a < b < 1$
- The pdf of X is
 \[f_X(x) = \begin{cases}
 1 & 0 < x < 1 \\
 0 & \text{elsewhere}
 \end{cases} \]
- Any probability can now be readily computed
For a random variable X a **cumulative distribution function** or cdf is

$$F_X = P_X((\infty; x]) = P(\{s \in S : X(s) \leq x\})$$

- The short notation is $P(X \leq x)$
- For discrete random variables a cdf is a **step function**
Example: a geometric random variable

- Starting at a fixed time, we observe the gender of each newborn child at a hospital until a boy is born. Let $p = P(B)$ and X the number of births observed until "success"

- Then,

$$p_X(x) = (1 - p)^{x-1}p$$

for $x = 1, 2, 3\ldots$

- Verify that

$$F_X(x) = 1 - (1 - p)^x$$

for any positive integer x

- More generally,

$$F_X(x) = \begin{cases} 0 & x \leq 1 \\ 1 - (1 - p)^{\lfloor x \rfloor} & x \geq 1 \end{cases}$$

where $\lfloor x \rfloor$ is the integer part of x
What is the probability that we have to wait no more than 5 times for the birth of a boy? Assume $p = 0.51$

Use the following R command: $pgeom(q = 5, \text{prob} = 0.51)$; the result is 0.9718

On the contrary, the probability of having to wait more than 3 times is $1 - pgeom(q = 3, \text{prob} = 0.51)$
Since a cdf of a discrete random variable is a step function, it does not attain all possible values of X.

How, in general, do we split the distribution into two halves?

Any number m such that $P(X \leq m) \geq 0.5$ and also $P(X \geq m) \geq 0.5$ is called a median of F (or of X).

The median need not be unique.
Let X be a random variable with the CDF $F(x)$. Let m_0 be the first number such that $F(m_0) \geq 0.5$ and m_1 the last number such that $P(X \geq x) \geq 0.5$. Then, m is a median of X if and only if $m \in [m_0, m_1]$.

The proof uses the right continuity of a cdf.
Example

- X - a random number on $(0, 1)$
- Check that

$$F_X(x) = \begin{cases}
0 & x < 0 \\
x & 0 \leq x < 1 \\
1 & x \geq 1
\end{cases}$$
Equality in distribution

- X and Y are **equal in distribution** or $X \equiv Y$ iff

\[F_X(x) = F_Y(x) \]

for all $x \in \mathbb{R}$

- This is non-trivial: compare X from the last example and $Y = 1 - X$
Main Properties of cdfs

- F is non-decreasing
- $\lim_{x \to -\infty} F(x) = 0$
- $\lim_{x \to \infty} F(x) = 1$
- $F(x)$ is right continuous
Some other important properties of cdf

- For $a < b$,
 \[P[a < x \leq b] = F_X(b) - F_X(a) \]

- For any random variable
 \[P(X = x) = F_X(x) - F_X(x^-) \]

 for any $x \in \mathbb{R}$
Example

- X is a lifetime in years of a mechanical part

\[
F_X(x) = \begin{cases}
0 & x < 0 \\
1 - \exp(-x) & x \geq 0
\end{cases}
\]

\[
f_X(x) = \begin{cases}
\exp(-x) & 0 < x < \infty \\
0 & \text{elsewhere}
\end{cases}
\]

- $P(1 < X \leq 3) = F_X(3) - F_X(1) = \exp(-1) - \exp(-3) = 0.318$