STAT 517: Sufficiency
Minimal sufficiency and Ancillary Statistics. Sufficiency, Completeness, and Independence

Prof. Michael Levine

April 21, 2015
Not all sufficient statistics created equal...

So far, we have mostly had a single sufficient statistic for one parameter or two for two parameters (with some exceptions)

Is it possible to find the **minimal sufficient statistics** when further reduction in their number is impossible?

Commonly, for k parameters one can get k minimal sufficient statistics
Example

- $X_1, \ldots, X_n \sim Unif(\theta - 1, \theta + 1)$ so that

 \[
 f(x; \theta) = \frac{1}{2} l_{(\theta-1, \theta+1)}(x)
 \]

 where $-\infty < \theta < \infty$

- The joint pdf is

 \[
 2^{-n} \left\{ l_{(\theta-1, \theta+1)}(\min x_i) l_{(\theta-1, \theta+1)}(\max x_i) \right\}
 \]

- It is intuitively clear that $Y_1 = \min x_i$ and $Y_2 = \max x_i$ are joint minimal sufficient statistics
Occasional relationship between MLE’s and minimal sufficient statistics

- Earlier, we noted that the MLE $\hat{\theta}$ is a function of one or more sufficient statistics, when the latter exists.
- If $\hat{\theta}$ is itself a sufficient statistic, then it is a function of others...and so it may be a sufficient statistic.
- E.g. the MLE $\hat{\theta} = \bar{X}$ of θ in $N(\theta, \sigma^2)$, σ^2 is known, is a minimal sufficient statistic for θ.
- The MLE $\hat{\theta}$ of θ in a $P(\theta)$ is a minimal sufficient statistic for θ.
- The MLE $\hat{\theta} = Y_{(n)} = \max_{1 \leq i \leq n} X_i$ of θ in a $Unif(0, \theta)$ is a minimal sufficient statistic for θ.
- $\hat{\theta}_1 = \bar{X}$ and $\hat{\theta}_2 = \frac{n-1}{n} S^2$ of θ_1 and θ_2 in $N(\theta_1, \theta_2)$ are joint minimal sufficient statistics for θ_1 and θ_2.
A sufficient statistic $T(X_1, \ldots, X_n)$ is called a \textit{minimal sufficient statistic} if it is a function of any other sufficient statistic.
When MLE and minimal sufficient statistics have nothing in common with each other: Example I

- Take again $X_1, \ldots, X_n \sim Unif(\theta - 1, \theta + 1)$
- Clearly, $\theta - 1 < Y_1 < Y_n < \theta + 1$, or
 \[Y_n - 1 < \theta < Y_1 + 1 \]
- To achieve the maximum possible value of the likelihood function $\left(\frac{1}{2}\right)^n$, choose any θ between $Y_n - 1$ and $Y_1 + 1$; a common choice as MLE is the average of two endpoints
 \[\hat{\theta} = \frac{Y_1 + Y_n}{2} \]
- Note that the resulting $\hat{\theta}$ is not even a sufficient statistic...and, therefore, cannot be a minimal sufficient statistic
The above example is a location family \(X_i = \theta + W_i \) where \(W_i \sim Unif(-1, 1) \).

Take a general location family with \(W_i \) having a pdf \(f(w) \) and cdf \(F(w) \).

We know that the order statistics \(Y_1 < Y_2 < \cdots < Y_n \) form a set of sufficient statistics in this case...Can we do better?

If \(f(w) \) is a \(N(0, 1) \) pdf, \(\bar{X} \) is both the MVUE and MLE of \(\theta \); moreover, \(\bar{X} \) is a minimal sufficient statistic and it is a minimal sufficient one.

Take \(f(w) = e^{-w} \) for \(w > 0 \) and zero elsewhere; here, \(Y_1 \) is a sufficient statistic and the MLE - so \(Y_1 \) is a minimal sufficient statistic.
On the contrary, for the logistic location family, the MLE of θ exists and is easy to compute...nevertheless, the order statistics are *minimal sufficient* in this case.

If $f(w)$ is a Laplace pdf with the location parameter θ, the median Q_2 is an MLE; however, yet again, the order statistics are *minimal sufficient* in this case.

This latter situation is, in general, more common for location models.
In general, if the minimal sufficient statistic exists (and it almost always does), any complete sufficient statistic is also a minimal sufficient statistic.

The converse is not true, however; from the uniform example, note that

$$E \left[\frac{Y_n - Y_1}{2} - \frac{n - 1}{n + 1} \right] = 0$$

for all θ.
Ancillary statistics

- A quick example - for $X_1, \ldots, X_n \sim N(\theta, 1)$ the distribution of S^2 does not depend on θ
- Alternatively, take $X_1, X_2 \sim \Gamma(\alpha, \theta)$ where $\alpha > 0$ is known and recall that $Z = \frac{X_1}{X_1 + X_2}$ has a beta distribution that does not depend on θ...Thus, Z is an **ancillary** statistic for this sample size 2 w.r.t θ
- In general, select a location family $X_i = \theta + W_i$, $i = 1, \ldots, n$, where $-\infty < \theta < \infty$ is a parameter and $w_1, \ldots, W_n \sim f(w)$ that doesn’t depend on θ
- The common pdf of X_i is $f(x - \theta)$...any **location-invariant** statistic $Z = u(X_1, \ldots, X_n)$ s.t.
 $Z = u(W_1 + \theta, \ldots, W_n + \theta) = u(W_1, \ldots, W_n$ for all θ is an ancillary statistic
- Sample variance is one such statistic...Sample range $R = \max X_i - \min X_i$ is another...Finally, the absolute mean deviation from the sample median

Levine
STAT 517: Sufficiency