STAT 517: Sufficiency
Measures of Quality of Estimators

Prof. Michael Levine

January 5, 2015
Minimum variance unbiased estimators (MVUE)

- So far, we considered consistency and unbiasedness
- Recall that MLE’s are not always unbiased although they tend to be asymptotically unbiased under a set of regularity conditions
- The model: \(X_1, \ldots, X_n \sim f(x; \theta) \) for \(\theta \in \Omega \)
- For a given \(n > 0 \), \(Y = u(X_1, \ldots, X_n) \) is a minimum variance unbiased estimator (MVUE) of \(\theta \) if \(Y \) is unbiased and the variance of \(Y \) is less than or equal to the variance of every other unbiased estimator of \(\theta \)
Example

Let $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$

Since $\bar{X} \sim N\left(\theta, \frac{\sigma^2}{n}\right)$, \bar{X} is an unbiased estimator of θ...but so is X_1.

Clearly, $\text{Var} \bar{X} < \text{Var} X_1$ for any $n > 1$...but \bar{X} is not a minimum variance unbiased estimator!!
Any function $\delta(Y)$ is a **decision function** or a **decision rule**.

A specific values $\delta(y)$ is a **decision**.

To measure how different $\delta(y)$ is from θ, use the **loss function** $L(\theta, \delta(y))$.

The loss function is random...better to use the **risk function**

$$R(\theta, \delta) = \mathbb{E} \{ L(\theta, \delta(y)) \} = \int_{-\infty}^{\infty} L(\theta, \delta(y)) f_Y(y; \theta) \, dy$$

Problem: uniform minimization of risk function over all possible θ may be impossible.
Choose the mean squared error loss $L(\theta, \delta(y)) = [\theta - \delta(y)]^2$.

How to choose between $\delta(y) = y$ and $\delta_2(y) = 0$? The risk functions are

$$R(\theta, \delta_1) = \mathbb{E} [(\theta - Y)^2] = \frac{1}{n}$$

and

$$R(\theta, \delta_1) = \mathbb{E} [(\theta - 0)^2] = \theta^2$$
Example

- If $\theta = 0$, then the 2nd choice is better...but if θ is far from zero, $\hat{\delta}_2 = 0$ is a bad choice!
- If considering only $\delta(y)$: $E[(\delta(Y))] = 0$, then δ_2 is not allowed
- Under the latter restriction, we are looking for an MVUE which is, actually, \bar{X} (to be shown later)
- Yet another possible alternative is to use the **minimax criterion**: $\delta_0(y)$ is a minimax decision function if, for all $\theta \in \Theta$,

$$
\max_{\theta} R[\theta, \delta_0(y)] \leq \max_{\theta} R[\theta, \delta(y)]
$$

for any other decision function $\delta(y)$
- Note $R(\theta, \delta_2) = \theta^2$ which is unbounded if $-\infty < \theta < \infty$ and so has to be excluded according to the minimax criterion
- Actually (not proven by us here..) δ_1 is the best choice according to the minimax decision function
Another possibility is simply to define $\delta(X_1, \ldots, X_n)$ without using a statistic Y - will not do it here.

Besides the squared error loss function, can also consider e.g. the **absolute-error loss function**

$$L(\theta, \delta) = \begin{cases} 0 & |\theta - \delta| \leq a \\ b & |\theta - \delta| > a \end{cases}$$

for some $a, b > 0$

This is sometimes called the **goalpost loss function**
A scientist A observes 10 independent trials with prob. of success $0 < \theta < 1$ and has only 1 success

A scientist B observes all trials until the first success which happens to be the 10th

First model: $Y \sim B(10, \theta)$; the second model is $g(z) = (1 - \theta)^{z-1}\theta$ with $z = 10$

A sensible estimate in both cases is the relative frequency: $\hat{\theta} = \frac{y}{n} = \frac{1}{z} = \frac{1}{10}$

$\hat{\theta}$ is unbiased in the first case but not in the second!
The first likelihood is

\[L_1(\theta) = \binom{10}{y} \theta^y (1 - \theta)^{10-y} \]

The second likelihood is

\[L_2(\theta) = (1 - \theta)^{z-1} \theta \]

When \(z = 10 \), both are proportional to \((1 - \theta)^9 \theta\)...and both give the same answer \(\hat{\theta} = \frac{1}{10} \)

To a true believer in the likelihood principle the fact that one of them is unbiased does not matter!