STAT 517: Statistical Inference
Lecture 8: Maximum Likelihood Tests

Prof. Michael Levine

March 5, 2015
Basic Setup

- The model: observations $X_1, \ldots, X_n \sim f(x, \theta)$ with $\theta \in \Omega$
- Hypotheses: $H_0 : \theta = \theta_0$ vs. $H_a : \theta \neq \theta_0$
- The likelihood function is $L(\theta) = \prod_{i=1}^{n} f(X_i; \theta)$ and the log-likelihood is $l(\theta) = \sum_{i=1}^{n} \log f(X_i; \theta)$
- Keep in mind that asymptotically $L(\theta_0)$ is the maximum value of $L(\theta)$
Likelihood Ratio Test

- Observe that the ratio

$$\Lambda = \frac{L(\theta_0)}{L(\hat{\theta})}$$

- Λ is always less than 1 but close to it if H_0 is true...

- Decision rule: reject H_0 at the level of significance α if $\Lambda \leq c$

 where

$$\alpha = P_{\theta_0}[\Lambda \leq c]$$

- The resulting test is called the **likelihood ratio test** or LRT
Example

- Take \(f(x; \theta) = \frac{1}{\theta} e^{-x/\theta} \) - an exponential pdf, \(0 < \theta < \infty \)
- We know that \(\hat{\theta} = \bar{X} \) is the MLE and \(L(\theta) = \theta^{-n} e^{-n\bar{X}/\theta} \)
- The likelihood ratio has the form (up to \(e^n \)) of \(g(t) = t^n e^{-nt} \) where \(t = \frac{\bar{X}}{\theta_0} > 0 \)
- Easy to verify that \(g'(1) = 0 \) and \(t = 1 \) is an actual maximum; thus, \(g(t) \leq c \) iff \(t < c_1 \) or \(t \geq c_2 \)
- Under \(H_0 \), \(\frac{2}{\theta_0} \sum_{i=1}^{n} X_i \sim \chi^2_{2n} \) and so the decision rule is to reject \(H_0 \) if

\[
\frac{2}{\theta_0} \sum_{i=1}^{n} X_i \leq \chi^2_{2n,1-\alpha/2}
\]

or

\[
\frac{2}{\theta_0} \sum_{i=1}^{n} X_i \geq \chi^2_{2n,\alpha/2}
\]
Example

- Now, take $f(x; \theta) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\theta)^2/2\sigma^2}$ with known $\sigma^2 > 0$
- Hypotheses: $H_0 : \theta = \theta_0$ vs. $H_a : \theta \neq \theta_0$
- Observe that the MLE $\hat{\theta} = \bar{X}$ and the likelihood ratio is

$$L(\theta) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n}(x_i - \theta)^2}$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n}(x_i - \bar{x})^2} e^{-\frac{1}{2\sigma^2} n(\bar{x} - \theta)^2}$$
Example

▶ The likelihood ratio is

\[\Lambda = e^{-\frac{1}{2\sigma^2} n(\bar{x} - \theta_0)^2} \]

▶ \(\Lambda \leq c \) is equivalent to \(-2 \log \Lambda \geq -2 \log c \) where

\[-2 \log \Lambda = \left(\frac{\bar{X} - \theta_0}{\sigma \sqrt{n}} \right)^2 \sim \chi^2_1 \]

under \(H_0 \)

▶ The decision rule: reject \(H_0 \) if \(-2 \log \Lambda = \left(\frac{\bar{X} - \theta_0}{\sigma \sqrt{n}} \right)^2 \geq \chi^2_{1,\alpha} \)
Asymptotic result

Under the regularity conditions needed for asymptotic efficiency of MLE, under $H_0 : \theta = \theta_0$ we have

$$-2 \log \Lambda \xrightarrow{D} \chi_1^2$$

This, of course, suggests the decision rule “Reject H_0 if $\chi^2_L \geq \chi^2_{1, \alpha}$

The resulting test has the asymptotic level of significance α
Wald type test

- A natural test statistic based on the asymptotic distribution of $\hat{\theta}$

$$\chi^2_W = \left\{ \sqrt{nI(\hat{\theta})}(\hat{\theta} - \theta_0) \right\}^2$$

- $I(\hat{\theta}) \xrightarrow{P} I(\theta_0)$ under H_0 because $I(\theta)$ is a continuous function

- Thus, under H_0, $\chi^2_W \sim \chi^2_1$ asymptotically; the decision rule is “reject H_0 if $\chi^2_W \geq \chi^2_{1,\alpha}$

- This test has asymptotic level α; moreover, one can show that

$$\chi^2_W - \chi^2_L \xrightarrow{P} 0$$
Scores-type test

The score vector is

\[S(\theta) = \left\{ \frac{\partial \log f(X_i; \theta)}{\partial \theta} \right\}' \]

Note that \(\frac{1}{\sqrt{n}} I'(\theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta_0)}{\partial \theta} \) and define the statistic

\[\chi^2_R = \left(\frac{I'(\theta_0)}{\sqrt{nI(\theta_0)}} \right)^2 \]

Can show that

\[\chi^2_R = \chi^2_W + R_{0n} \]

where \(R_{0n} \xrightarrow{p} 0 \)

The decision rule is “reject \(H_0 \) if \(\chi^2_R \geq \chi^2_{1,\alpha} \)”
Example

- Take a beta $X \sim (\theta, 1)$ with the pdf $f(x) = \theta x^{\theta-1}$, $0 < x < 1$
- Test $H_0 : \theta = 1$ (meaning $X \sim \text{Unif}[0, 1]$) vs. $H_a : \theta \neq 1$
- Recall that the MLE of θ is $\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \log X_i}$
- Observe that
 \[
 L(\hat{\theta}) = \left(-\sum_{i=1}^{n} \log X_i \right)^{-n} \exp \left\{ -\sum_{i=1}^{n} \log X_i \right\} \exp \{ n(\log n - 1) \}
 \]
 and $L(1) = 1$
- Therefore, the likelihood ratio is $\Lambda = \frac{1}{L(\hat{\theta})}$ and the test statistic is
 \[
 \chi^2_L = -2 \log \Lambda = 2 \left\{ -\sum_{i=1}^{n} \log X_i - n \log \left(-\sum_{i=1}^{n} \log X_i \right) - n + n \log n \right\}
 \]
Example

- Recall that $I(\theta) = \theta^{-2}$ that can be estimated consistently by $\hat{\theta}^{-2}$

- The Wald-type test statistic is

$$\chi^2_W = \left(\sqrt{\frac{n}{\hat{\theta}^2}}(\hat{\theta} - 1)\right)^2 = n \left\{1 - \frac{1}{\hat{\theta}}\right\}^2$$

- To obtain the scores type test note that

$$l'(1) = \sum_{i=1}^{n} \log X_i + n$$

- The test statistic is

$$\chi^2_R = \left\{\frac{\sum_{i=1}^{n} \log X_i + n}{\sqrt{n}}\right\}^2$$

- Note that in this particular case $\chi^2_L = \chi^2_R$