Adaptive estimation of the functional component
in a semiparametric multivariate partially linear model

Michael Levine, and Lie Wang

Purdue University, and MIT

1. Introduction

Semiparametric models have a long history in statistics and have received considerable attention in the last 30 – 40 years. They have also been a subject of continuing investigation in subject areas such as econometrics. The main reason they are considered is that sometimes the relationships between the response and predictors are very heterogeneous in the same model. Some of the relationships are clearly linear whereas others are much harder to categorize. In many situations, a small subset of variables is presumed to have an unknown relationship with the response that is modeled nonparametrically while the rest are assumed to have a linear relationship with it. As an example, Engle, Granger, Rice and Weiss (1986) studied the nonlinear relationship between temperature and electricity usage where other related factors, such as income and price, are parameterized linearly. Shiller (1984) considered an earlier cost curve study in the utility industry using a partial linear model.

The model we consider in this paper is a semiparametric partial linear multivariate model

\[Y_i = a + X_i' \beta + f(U_i) + \varepsilon_i \] \hspace{1cm} (1.1)

where \(X_i \in \mathbb{R}^p \) and \(U_i \in \mathbb{R}^q \), \(\beta \) is an unknown \(p \times 1 \) vector of parameters, \(a \) is an unknown intercept term, \(f(\cdot) \) is an unknown function and \(\varepsilon_i \) are independent and identically distributed random variables with mean 0 and constant variance \(\sigma^2 \). We consider two cases with respect to \(U \): a random design case whereby \(U \) is a \(q \)-dimensional random variable and a fixed design case with \(U_i \) being a \(q \)-dimensional vector where each coordinate is defined on an equispaced grid on \([0, 1]\). In the fixed design case the errors are independent of \(X_i \) while in the random design case they are independent of \((X_i', U_i)\). To obtain meaningful
results, the function f is assumed to belong in the Lipschitz ball class $\Lambda_\alpha(M)$ where α is the Lipschitz exponent. Of particular interest is the fact that, to be coherent, in the fixed design case when $q > 1$ the model (1.1) must have multivariate indices. The version with $q = 1$ was earlier considered in Wang, Brown and Cai (2011) and we only consider here the case of $q > 1$.

In this paper, we consider the estimation of both parametric and nonparametric components. The difference sequence approach utilized in Wang, Brown and Cai (2010) is generalized so that it can be used when $q > 1$. In the fixed design case, the model is only coherent when the indices are assumed to be multivariate; as a result, it can be viewed as a semiparametric random field model. Let n be the sample size; then, using differences of observations, a \sqrt{n}-consistent estimator of the parametric component and a \sqrt{n}-consistent estimator of the intercept are constructed; to obtain \sqrt{n} rate of convergence for the intercept a, the smoothness of a nonparametric component must exceed $q/2$. As is the case in Wang, Brown and Cai (2010), the correlation between differences has to be ignored and the ordinary least squares approach must be used instead of the generalized least squares to obtain an optimal estimator. These estimators can be made asymptotically efficient if the order of the difference sequence is allowed to go to infinity. The estimator of the nonparametric component is defined by using a kernel regression on the residuals and is found to be $n^{-\alpha/((2\alpha+q))}$ consistent.

2. Optimal rates of convergence for the deterministic design case

We consider the following semiparametric model

$$Y_i = a + X_i'\beta + f(U_i) + \varepsilon_i$$

where $X_i \in \mathbb{R}^p$, $U_i \in S = [0,1]^q \subset \mathbb{R}^q$, ε_i are iid zero mean random variables with variance σ^2 and finite absolute moment of the order $\delta + 2$ for some small $\delta > 0$, that is, $E|\varepsilon_i|^{\delta+2} < \infty$. As noticed earlier in Brown, Levine and Wang (2014), the model (2.1) must have multidimensional indices $i = (i_1, \ldots, i_q)'$ to be coherent. Throughout this work, we will use bold font \mathbf{i} to refer to multivariate indices and regular font to refer to coordinates of a multivariate index. For some positive integer m, we can take $i_k = 0,1,\ldots,m$ for $k = 1,\ldots,q$; thus, the total sample size is $n = m^q$. As a result, we have what is essentially a random field model. We denote the density function of the random field ε_i
Multivariate partially linear model

$h(x)$ where x is a generic argument. Note that this assumption implies that $m = o(n)$ as $n \to \infty$. Due to the use of multivariate indices, one can also say that ε_i form an independent random field with the marginal density function $h(x)$ where x is a generic argument. We will say that two indices $i^1 = (i^1_1, \ldots, i^1_q) \leq i^2 = (i^2_1, \ldots, i^2_q)$ if $i^1_k \leq i^2_k$ for any $k = 1, \ldots, q$; the relationship between i^1 and i^2 is that of partial ordering. Also, for a multivariate index i, we denote $|i| = |i_1| + \ldots + |i_q|$. In this section, we assume that U_i follows a fixed equispaced design: $U_i = (u_{i_1}, \ldots, u_{i_q})' \in \mathbb{R}^q$ where each coordinate is $u_{i_k} = \frac{i_k}{m}$. In the model (2.1), β is an unknown p-dimensional vector of parameters and a is an unknown intercept term. We assume that X_i's are independent random vectors that are also independent of ε_i; moreover, we denote the non-singular covariance matrix of $X \Sigma_X$. For convenience, we also denote $N = \{1, \ldots, m\}^q$. This model requires an identifiability condition to be satisfied; more specifically, $\int_{[0,1]^q} f(u)du = 0$. The version of (2.1) with $q = 1$ has been considered earlier in Wang, Brown and Cai (2010). The case of $q = 1$ is quite different in that it only requires univariate indices for the model to be coherent.

As a reminder, we consider functions f belonging to the Lipschitz ball $\Lambda^\alpha(M)$ for some positive constant M that is defined as follows. For a q-dimensional index $j = (j_1, \ldots, j_q)$, we define $j(l) = \{j : |j| = j_1 + \ldots + j_q = l\}$. Then, for any function $f: \mathbb{R}^q \to R$, $\frac{\partial f}{\partial u_{j_1} \ldots \partial u_{j_q}}$ is defined for all j such that $|j| = l$. Then, the Lipschitz ball $\Lambda^\alpha(M)$ consists of all functions $f(u): [0,1]^q \to R$ such that $|D^{(l)} f(u)| \leq M$ for $l = 0, 1, \ldots, \lfloor \alpha \rfloor$ and $|D^{(\lfloor \alpha \rfloor)} f(u) - D^{(\lfloor \alpha \rfloor)} f(w)| \leq M ||u - w||^{\alpha'}$ with $\alpha' = \alpha - \lfloor \alpha \rfloor$. Here and in the future, $|| \cdot ||$ stands for the regular l_2 norm in \mathbb{R}^q.

In Brown, Levine and Wang (2014), the estimator of the nonparametric component f was constructed in two stages. First, the vector coefficient β was estimated using the difference approach. Then, the multivariate Nadaraya-Watson kernel smoother was applied to the residuals from that fit in order to estimate, first, the unknown intercept a and, then, the unknown function f. Brown, Levine and Wang (2014) established a uniform upper bound on the risk at a point for the difference based estimator \hat{f} of the nonparametric component f. More specifically, they proved that, for any Lipschitz indicator $\alpha > 0$ and any $U_0 \in [0,1]^q$, the version of (2.1) with $q = 1$ has been considered earlier in Wang, Brown and Cai (2010).
the estimator \(\hat{f} \) satisfies

\[
\sup_{f \in \Lambda^\alpha(M)} \mathbb{E}[(\hat{f}(U_0) - f(U_0))^2] \leq C n^{-2\alpha/(2\alpha + q)}
\]

for a constant \(C > 0 \). The following result also establishes the lower bound on the risk of that estimator, therefore proving that \(n^{-\alpha/(2\alpha + q)} \) is the minimax rate of convergence. Compared to Theorem (2.3) of Brown, Levine and Wang (2014), some extra assumptions are needed.

Theorem 2.1. Let \(\varepsilon_i \) be independent identically distributed random variables with zero mean and finite variance \(\sigma^2 \); moreover, we assume that, for some small \(\delta > 0 \),

\[
\mathbb{E}_{\varepsilon_i}^{2+\delta} < \infty.
\]

Also, we assume that the marginal density function of observations \(Y_i \), \(p(Y_i) = \int p_\varepsilon(Y_i - X_1^i \beta) dX_1 \) satisfies the following assumption: there exists \(p_* > 0 \), \(v_0 > 0 \) such that

\[
\int p(U) \log \left(\frac{p(U)}{p(U + V)} \right) dU \leq p_* v^2 \text{ for all } ||V|| < v_0
\]

Then, the convergence rate \(n^{-\alpha/(2\alpha + q)} \) is optimal

1. on \((\Lambda^\alpha(M), d_0) \) where \(d_0 \) is the distance at a fixed point \(U_0 \in [0, 1]^q \) and
2. on \((\Lambda^\alpha(M), || \cdot ||_2) \) where \(|| \cdot ||_2 \) is an \(L_2 \) distance on \([0, 1]^q\).

Remark 2.2. Note that the condition (2.2) is fairly general; in particular, a standard Gaussian density satisfies this condition. For more information on this condition, see Tsybakov (2009).

Proof. 1. To obtain the minimax convergence rate for the first case, we will use a two-point argument going all the way back to Donoho and Johnstone (1994). First, we need to define an appropriate "test" function. We will use the optimal bandwidth \(h_n = n^{-\frac{1}{2\alpha + q}} \) in each dimension \(j = 1, \ldots, q \) and a bandwidth matrix \(H_n = \text{diag}\{h_n\} = h_n I_{q \times q} \) for the estimator of function \(f(U) \). Next, consider a function \(K \in \Lambda^\alpha(M) \) such that \(K(U) > 0 \) for any \(||U|| \leq \frac{M}{2} \). As an example of such function, we can select \(K(U) = \exp \left(-\frac{1}{1-||V||^2} \right) I(||U|| \leq \frac{M}{2}) \). Note that this function reaches its maximum when \(||U|| = 0 \) and that this maximum is \(\exp(-1) \). A pair of functions that we will need for our problem are \(f_{0,n}(U) \equiv 0 \) and \(f_{1,n}(U) = h_n^\alpha K(H_n^{-\frac{1}{2}}(U -
$U_0)) = h_n^2 K(h_n^{-1}(U - U_0))$. The following three conditions must be checked for us to conclude that the lower bound is achieved at the convergence rate $n^{-\alpha/2(\alpha + q)}$.

- The first condition is that $f_{j,n} \in \Lambda^\alpha(M)$ for $j = 1, 2$ and sufficiently large n. For $f_{0,n} \equiv 0$ it is clearly satisfied immediately. Next, for any $l = 0, 1, \ldots, [\alpha]$, $|D^{(l)} f_{1,n}(U)| = h_n^{\alpha-l} |D^{(l)} K(h_n^{-1}(U - U_0))| \leq M$ for sufficiently large n since the function $K \in \Lambda^\alpha(M)$. Finally, since $|D^{(l)} f_{1,n}(V) - D^{(l)} f_{1,n}(W)| \leq h_n^{\alpha-[\alpha]} |D^{(l)} K(h_n^{-1}(V-U_0)) - D^{(l)} K(h_n^{-1}(W-U_0))| \leq M||V-W||^\alpha$ for all sufficiently large n, we can say that $f_{1,n} \in \Lambda^\alpha(M)$

- Next, we need to check that, for sufficiently large n, the distance between the two “test” functions $d(f_{1,n}(U_0), f_{0,n}(U_0)) \geq n^{-\alpha/(2\alpha+q)}$. Indeed, $|f_{1,n}(U_0)| = |h_n^2 K(0)| \geq An^{-\alpha/2(\alpha + q)}$ for $A = \frac{1}{2} \exp (-1)$. Therefore, the distance between the two “points” in the Lipschitz ball $\Lambda^\alpha(M)$ that we selected is, indeed, of the right order $n^{-\alpha/(2\alpha+q)}$.

- Finally, let us define two product densities $m_{0,n}$ and $m_{1,n}$ that are densities of observations generated by (2.1) when the functional component is equal to $f_{0,n}$ and $f_{1,n}$, respectively. Using assumption (2.2), the Kullback distance between the two is

$$K(m_{0,n}, m_{1,n}) = \int \cdots \int \log \prod_{i \leq n} \frac{p(Y_i)}{p(Y_i - f_{1,n}(U_i))} \prod_{i \leq n} [p(Y_i) dY_i]
= \sum_{i \leq n} \int p(Y) \log \frac{p(Y)}{p(Y - f_{1,n}(U_i))} dY \leq \sum_{i \leq n} p^* f_{1,n}^2 (U_i)
= p_* h_n^{2\alpha} \exp (-2) \sum_{i \leq n} I \left(||U_i - U_0|| \leq \frac{Mh_n}{2}\right) \leq p_* h_n^{2\alpha} \exp (-2) \max((M/2)n h_n^q, 1)
\leq (M/2)p_* h_n^{2\alpha} \exp (-2) n h_n^q = (M/2)p_* \exp (-2) n h_n^{2\alpha + q} \leq C$$

for sufficiently large n where $C = (M/2)p_* \exp (-2)$. This establishes the optimality of the rate $n^{-\alpha/(2\alpha+q)}$.

2. Next, we establish the minimax rate of convergence for the $L_2[0, 1]^q$ risk.
First, recall the earlier result that, for any \(\alpha > 0 \),
\[
\sup_{f \in \Lambda^\alpha(M)} \mathbb{E} \left[\int_{[0,1]^q} (\hat{f}(U) - f(U))^2 \, dU \right] \leq C n^{-2\alpha/(2\alpha + q)}
\]
We will argue that the rate \(n^{-\alpha/(2\alpha + q)} \) is also the minimax rate under the \(L_2[0,1]^q \) loss. In what follows, we denote \(\lceil x \rceil \) the smallest integer that is larger than \(x \in \mathbb{R} \). First, let us define
\[
m = \lceil c_0 n^{q/(2\alpha + q)} \rceil \text{ where } c_0 > 0 \text{ is some real number.}
\]
As a second step, we choose the bandwidth \(h_n = m^{-1/q} \). Our next purpose is to define a partition of \([0,1]^q\) into a set of disjoint subsets and define a sequence of functions that take non-zero values on just one of these subsets. Such a multivariate partition with \(\mathbb{R}^q \)-valued partition points (vectors) \(U_k = (u_{k}^1, \ldots, u_{k}^q) \) can be defined by selecting \(u_{k}^j = \frac{k - 1}{m}, \) for \(k = 1, \ldots, m \). Now, denote \(\Delta_k = \{ [\frac{k-1}{m}, \frac{k}{m}), \ldots, [\frac{k-1}{m}, \frac{k}{m}) \} \in \mathbb{R}^q; \) note that the entire \([0,1]^q = \bigcup_k \Delta_k \) and that \(\Delta_k \cap \Delta_{k'} = \emptyset \) if \(k \neq k' \), that is \(\Delta_k \)'s are disjoint.

The next step consists of selecting hypotheses based on a function \(K(U) : [0,1]^q \to \mathbb{R} \) such that \(K(U) \in \Lambda^\alpha(M) \) and \(K(U) > 0 \) if and only if \(||U|| < \frac{1}{2} \). As before, we select the function \(K(U) = \exp \left(-\frac{1}{1-||U||^2} \right) I(||U|| \leq \frac{1}{2}) \).

Also, denote \(||K||_2 \) the \(L_2[0,1]^q \) norm of the function \(K \). To simplify the notation, let the diagonal bandwidth matrix be \(H = \text{diag} h_n = h_n I_{q\times q} \).

Now, we can define a set of \(m \) functions \(\Phi_k(U) = M h_n^\alpha K(H^{-1}(U - U_k)) \), for \(k = 1, \ldots, m \). Finally, denote the set of all binary sequences of length \(m \)
\[
\Omega = \{ \omega = (\omega_1, \ldots, \omega_m), \omega_i \in \{0,1\} \} = \{0,1\}^m.
\]
Then, the ”test functions” \(f_{jn}, j = 0, \ldots, J \) will be selected from the set of functions
\[
\mathbb{E} = \{ f_{\omega}(u) = \sum_{k=1}^m \omega_k \Phi_k(u), \omega \in \Omega \} \quad (2.3)
\]

The following three conditions now must be verified to ensure that \(n^{-\alpha/(2\alpha + q)} \) is, indeed, the minimax rate.

(a) First, we need to show that the \(L_2[0,1]^q \) distance between any two of the ”test functions” is bounded below by the multiple of \(n^{-\alpha/(2\alpha + q)} \).

For any two functions \(f_{\omega}, f_{\omega'} \in \mathbb{E}, \) the \(L_2[0,1]^q \)-distance between them
is
\[d(f_\omega, f_{\omega'}) = \sqrt{\int_{[0,1]^q} \left[f_\omega(U) - f_{\omega'}(U) \right]^2 dU} = \sqrt{\int_{[0,1]^q} \left[\sum_{k=1}^{m} (\omega_k - \omega'_k) \Phi_k(U) \right]^2 dU} \]
where \(\rho(\omega, \omega') = \sum_{k=1}^{q} I(\omega_k \neq \omega'_k) \) is the Hamming distance between \(\omega \) and \(\omega' \). Our next step requires the use of the so-called Varshamov-Gilbert Lemma that has been known for a long time in information theory (see, e.g. Gilbert (1952) as well as Ibragimov and Hasminskii (1977) for pioneering examples of the use of Varshamov-Gilbert Lemma in statistical context)). The Varshamov-Gilbert Lemma states that, for any \(m \geq 8 \), there exists a subset \(\{\omega^{(0)}, \ldots, \omega^{(J)}\} \) of \(\Omega \) such that \(\omega^{(0)} = (0, \ldots, 0) \), and \(\rho((\omega^{(j)}, \omega^{(k)})) \geq \frac{m}{8} \) for any \(0 \leq j \leq k \leq J \); moreover, \(J \geq 2^{m/8} \). Note that it suffices to choose the \(\omega \) and \(\omega' \) such that \(\sqrt{\rho(\omega, \omega')} \approx h_n^{-q/2} \) which is equivalent to \(\rho(\omega, \omega') \approx m \). In other words, to show that the rate \(n^{-\alpha/(2\alpha+q)} \) is, indeed, the minimax rate of convergence, we need to use an infinite number of “testing hypotheses” \(J \). It is now easy to verify that, for a sufficiently large \(n \),
\[d(f_\omega, f_{\omega'}) \geq M h_n^{\alpha/2} \|K\|_2 \sqrt{\frac{m}{16}} = \frac{M}{4} \|K\|_2 h_n^{\alpha} = \frac{M}{4} \|K\|_2 n^{-\frac{\alpha}{2\alpha+q}} \]
and so the rate is correct

(b) Clearly, each \(\Phi_k(U) \in \Lambda^\alpha(M) \); since each \(\omega_k \leq 1 \) and the functions \(\Phi_k(U) \) have disjoint supports for different \(k \), \(f_\omega \in \Lambda^\alpha(M) \).

(c) Finally, we also need to verify that the average Kullback-Leibler distance between the null hypothesis and others is bounded from above as follows:
\[\frac{1}{J} \sum_{j=1}^{J} K(f_{0,n}, f_{j,n}) \leq \alpha \log J. \]
Indeed, proceeding as before in the case of pointwise risk, one can find that
\[K(f_{0,n}, f_{j,n}) \leq p_* \sum_{i\leq n} f_{j,n}^2(U_i) \leq p_* \sum_{k=1}^{m} \sum_{i: U_i \in \Delta_k} \Phi_k^2(U_i) \]
\[\leq p_* M^2 K_{\max}^2 h_n^{2\alpha} \sum_{k=1}^{m} \# \{U_i \in \Delta_k\} \leq p_* M^2 K_{\max}^2 n h_n^{2\alpha} \leq p_* M^2 K_{\max}^2 c_0^{(-2\alpha+q)/q} m \]
for a sufficiently large n. Since Varshamov-Gilbert result suggests that $m \leq 8 \log M / \log 2$, the claim is, indeed, true if we select $c_0 = \left(\frac{8p_\star L_2^2 K_{\max}^2}{\alpha \log 2} \right)^{\frac{2}{2a+q}}$.

\section{Optimal rates of convergence for the random design case}

In the same way as in Wang, Brown and Cai (2011), our next step is to obtain minimax convergence rates in the case of random design. For convenience purposes, we restate the assumptions of that case. Our model is again

$$Y_i = a + X_i' \beta + f(U_i) + \varepsilon_i$$

for $i = 1, \ldots, n$; we also assume that U_i are random variables on $[0,1]^q$ and that $(X_i', U_i) \in \mathbb{R}^p \times \mathbb{R}^q$ are independent with an unknown joint density $g(x,u)$. The random errors ε_i are independent identically distributed with mean zero, variance σ^2 and are independent of (X_i', U_i). Moreover, we assume that the conditional covariance matrix $\Sigma_\star = \mathbb{E}[(X_1 - \mathbb{E}(X_1|U_1))(X_1 - \mathbb{E}(X_1|U_1))']$ is non-singular. As in any linear regression model, $\beta \in \mathbb{R}^p$ is a vector of coefficients. For any U with the marginal distribution $g(u)$, we also need to assume that $\mathbb{E}(f(U)) \equiv \int f(u)g(u)\,du = 0$ to ensure identifiability of the model (3.1). Finally, an individual coordinate of the vector X_i is denoted $X_{i,l}$, for $l = 1, \ldots, p$ and an individual coordinate of the random vector U is denoted U_r, for $r = 1, \ldots, q$. Note that, unlike the fixed design case, the indices i here are univariate.

As a first step, we obtain least squares estimates of the coefficient vector $\hat{\beta}$ and the intercept \hat{a}. The asymptotic normality and efficiency of the estimator $\hat{\beta}$ in the random case were established in the Theorem 3.4 of Brown, Levine and Wang (2014). To estimate the function $f(U)$, we apply a multivariate kernel smoother to the residuals $r_i = Y_i - \hat{a} - X_i' \hat{\beta}$. In the case of $q = 1$ Wang, Brown and Cai (2011) used the Gasser-Müller kernel smoother; however, generalization of Gasser-Müller kernels to the multivariate case is not very convenient and a better alternative is to use the Nadaraya-Watson smoother based on the multivariate product kernel. More specifically, let $K(U^r)$ be a univariate kernel function for a specific coordinate U^r, $r = 1, \ldots, q$ satisfying $\int K(U^r)\,dU^r = 1$ and having $[\alpha]$ vanishing moments. We choose the asymptotically optimal bandwidth $h_n = $
Multivariate partially linear model

\(n^{-1/(2\alpha+q)} \) (see, for example, J. Fan and I. Gijbels (1995)). The rescaled version of this kernel is \(K_h(U^r) = h^{-1}K(h^{-1}U^r) \) so that the \(q \)-dimensional rescaled kernel is \(K_h(U) = h^{-q}\prod_{r=1}^{q} K(h^{-1}U^r) \). Then, the Nadaraya-Watson estimator of \(f(U) \) is

\[
\hat{f}_n(U) = \sum_{i=1}^{n} W_{i,h}(U - U_i)r_i
\]

where the weights \(W_{i,h}(U - U_i) = \frac{K_h(U_i - U)}{\sum_{i=1}^{n} K_h(U_i - U_i)} \). We stress the dependence of this estimator on the sample size \(n \) by using it as a subscript. To make the notation shorter, we will also use \(||\cdot||_2 \) to denote the \(L_2[0,1]^q \) norm and \(||\cdot||^2 \) the squared norm in the same space. As a first step, we need to establish the analogue of Theorem 2.3 from Brown, Levine and Wang (2014) in the case of random design. Since the proof of that result is almost analogous to Theorem 2.3, we omit it and only state the final result.

Theorem 3.3. Under the assumptions of Theorem 3.4 of Brown, Levine and Wang (2014), for any Lipschitz indicator \(\alpha > 0 \) and any \(U_0 \in [0,1]^q \), the estimator \(\hat{f}_n \) satisfies

\[
\sup_{f \in \Lambda^\alpha(M)} \mathbb{E}[|\hat{f}_n(U_0) - f(U_0)|^2] \leq Cn^{-2\alpha/(2\alpha+q)}
\]

for a constant \(C > 0 \). Also, for any \(\alpha > 0 \),

\[
\sup_{f \in \Lambda^\alpha(M)} \mathbb{E} \left[\int_{[0,1]^q} (\hat{f}_n(U) - f(U))^2 \, dU \right] \leq Cn^{-2\alpha/(2\alpha+q)}
\]

Theorem (3.3) establishes upper bounds on the rate of convergence for the distance at a point and the \(L_2[0,1]^q \) distance. In order to obtain the optimality of this convergence rate, we need to match these upper bounds with lower bounds. This is done in the following main result of this section.

Theorem 3.4. 1. Let \(T_n \) be an arbitrary estimator of the function \(f \). Under the assumptions of Theorem 2.3 of Brown, Levine and Wang (2014), for any Lipschitz indicator \(\alpha > 0 \) and any \(U_0 \in [0,1]^q \), the following holds:

\[
\liminf_{n \to \infty} \inf_{T_n} \sup_{f \in \Lambda^\alpha(M)} \mathbb{E}_f \left[n^{\frac{2\alpha}{2\alpha+q}} (T_n(U_0) - f(U_0))^2 \right] \geq c_1
\]
where \(c_1 \) is a constant that does not depend on \(n \). In other words, \(n^{-\alpha/(2\alpha+q)} \)

is an optimal (minimax) rate of convergence when estimating the function \(f(U) \) at a given fixed point \(U_0 \).

2. Again, let \(T_n \) be an arbitrary estimator of the function \(f \). Under the assumptions of Theorem 2.3 of Brown, Levine and Wang (2014), for any Lipschitz indicator \(\alpha > 0 \),

\[
\liminf_{n \to \infty} \inf_{T_n} \sup_{f \in \Lambda^\alpha(M)} \mathbb{E}_f \left[\int_{[0,1]^q} n^{2\alpha/(2\alpha+q)} (T_n(U) - f(U))^2 \, dU \right] \geq c_2
\]

where \(c_2 \) is a constant that doesn’t depend on \(n \).

Proof. 1. As a first step, we will consider the case of estimation at a point \(U_0 \in [0,1]^q \). The proposed minimax rate is \(\psi_n = n^{-\alpha/(2\alpha+q)} \). The subscript \(n \) is used to stress its dependence on the sample size \(n \). We also define two test functions \(f_{0,n}(U) \equiv 0 \) and \(f_{1,n}(U) = h_n^\alpha K(h_n^{-1}(U - U_0)) \) that are exactly the same as those used in the proof of the first part of the theorem (2.1). Recall that the distance at a point between these functions is

\[
|f_{1,n}(U_0)| \geq A\psi_n
\]

where the convergence rate \(\psi_n = n^{-\alpha/(2\alpha+q)} \) and \(A = \frac{1}{2} \exp(-1) \) Denote \(\mathbb{E}_{U_1,\ldots,U_n} \) the conditional expectation with respect to the joint distribution of \(U_1, \ldots, U_n \). Also, denote the “test” function \(\Psi \) that, for a given set of data, selects either the first or the second function \(f_{0,n} \) or \(f_{1,n} \). Then, using Chebyshev’s inequality, we have

\[
\sup_{f \in \Lambda^\alpha(M)} \mathbb{E}_f [\psi_n |T_n(U_0) - f(U_0)|] \geq A^2 \max_{f \in f_{0,n}, f_{1,n}} P(|T_n(U_0) - f(U_0)| \geq A\psi_n)
\]

\[
\geq A^2 \frac{1}{2} \sum_{j=0}^1 \mathbb{E}_{U_1,\ldots,U_n} \left[P(|T_n(U_0) - f(U_0) \geq A\psi_n|U_1,\ldots,U_n) \right]
\]

\[
= A^2 \mathbb{E}_{U_1,\ldots,U_n} \left[\frac{1}{2} \sum_{j=0}^1 P(|T_n(U_0) - f(U_0)| \geq A\psi_n|U_1,\ldots,U_n) \right]
\]

\[
A^2 \mathbb{E}_{U_1,\ldots,U_n} \left[\inf_{\Psi} \frac{1}{2} \sum_{j=0}^1 P((\Psi \neq j)|U_1,\ldots,U_n) \right]
\]

where the last inequality follows from the triangle inequality and the fact that the distance between the two functions is greater than or equal to \(2A\psi_n \).
For fixed U_1, \ldots, U_n we have the distance between the two product densities $m_{0,n}$ and $m_{1,n}$ associated with functions $f_{0,n}$ and $f_{1,n}$ $K(P_0, P_1) \leq C$ for the same finite C that was obtained in the proof of theorem (2.1). Thus, the lower bound becomes

\[
\bar{p}_{e,1} = \inf_{\Psi} P((\Psi \neq j) | U_1, \ldots, U_n) \geq \max \left(\frac{1}{4} \exp(-C), \frac{1 - \sqrt{C/2}}{2} \right)
\]

according to the Theorem 2.2 of Tsybakov (2009) which finishes our proof.

2. Next, we need to consider the $L_2[0,1]^q$ case. As before, we will need not just two, but $M + 1$ hypotheses with $M \to \infty$ as $n \to \infty$. The needed hypotheses are defined as f_{jn}, $j = 0, \ldots, M$ where f_{jn} are again selected from the function set (2.3) as before in the case of fixed design. Earlier, we proved that the L_2 distance between any two functions from this set is

\[
||f_{jn} - f_{kn}||_2 \geq \frac{L}{4} ||K||_2n^{-\alpha/(2\alpha+q)}
\]

for any $0 \leq j, k \leq M$. Denote E_{U_1, \ldots, U_n} the expectation with respect to the joint distribution of U_1, \ldots, U_n. The basic idea we are going to use is to bound the L_2 risk from below by the average probability of error rather than the minimax probability of error. This approach uses the so-called Fano’s lemma that was originally borrowed from the information theory; see, for example, Fano (1952). First, we notice that

\[
\sup_{f \in \Lambda_\alpha(M)} E \left[n^{2\alpha/(2\alpha+q)} ||\hat{f} - f||_2^2 \right] \\
\geq \frac{L^2}{24} \max_{f \in \{f_0, \ldots, f_{Mn}\}} P_f \left(||\hat{f}_n - f||_2 \geq \frac{L}{8} ||K||_2n^{-\alpha/2\alpha+q} \right) \\
\geq \frac{L^2}{24} \frac{1}{M+1} \sum_{j=0}^M E_{U_1, \ldots, U_n} \left[P_j \left(||\hat{f}_n - f||_2 \geq \frac{L}{8} ||K||_2n^{-2\alpha/(2\alpha+q)} | U_1, \ldots, U_n \right) \right] \\
= \frac{L^2}{24} ||K||_2E_{U_1, \ldots, U_n} \left[\frac{1}{M+1} \sum_{j=0}^M P_j \left(||\hat{f}_n - f||_2 \geq \frac{L}{8} ||K||_2n^{-2\alpha/(2\alpha+q)} | U_1, \ldots, U_n \right) \right]
\]

Next, let Ψ be a test that selects between the $M + 1$ hypotheses considered.
Then, the above result means that

$$
\sup_{f \in \Lambda^\alpha(M)} \mathbb{E} \left[n^{2\alpha/(2\alpha+q)} \| \hat{f} - f \|_2^2 \right]
\geq \frac{L^2}{64} \| K \|_2 \mathbb{E}_{U_1,\ldots,U_n} \left[\inf_{\Psi} \frac{1}{M+1} \sum_{j=0}^M \mathbb{P}_j (\Psi \neq j | U_1, \ldots, U_n) \right]
$$

Recall that earlier we showed that $\frac{1}{M} \sum_{j=1}^M K(f_{0,n}, f_{j,n}) \leq \alpha \log M$. Using this fact, together with the Fano’s lemma (for details see, for example, Tsybakov (2009) we can show that the minimum average probability of error is bounded from below as

$$
\inf_{\Psi} \frac{1}{M+1} \sum_{j=0}^M \mathbb{P}_j (\Psi \neq j | U_1, \ldots, U_n) \geq \frac{\log(M+1) - \log 2}{\log M} - \alpha \quad (3.2)
$$

which concludes our proof.

\qed