PROBLEMS

Chapter 7 Problems

3. We compute

\[E[|X - Y|^\alpha] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |x - y|^\alpha f(x, y) \, dx \, dy \]

\[= \int_0^1 \int_0^1 |x - y|^\alpha \, dx \, dy \]

\[= \int_0^1 \int_y^1 (x - y)^\alpha \, dx \, dy + \int_0^1 \int_0^y (y - x)^\alpha \, dx \, dy \]

\[= \int_0^1 \frac{(x - y)^{\alpha+1}}{\alpha + 1} \bigg|_{x=y}^1 \, dy + \int_0^1 \frac{(y - x)^{\alpha+1}}{\alpha + 1} \bigg|_0^y \, dy \]

\[= \int_0^1 \frac{(1-y)^{\alpha+1}}{\alpha + 1} \, dy + \int_0^1 \frac{y^{\alpha+1}}{\alpha + 1} \, dy \]

\[= \frac{(1-y)^{\alpha+2}}{(\alpha + 1)(\alpha + 2)} \bigg|_{y=0}^1 + \frac{y^{\alpha+2}}{(\alpha + 1)(\alpha + 2)} \bigg|_{y=0}^1 \]

\[= \frac{1}{(\alpha + 1)(\alpha + 2)} + \frac{1}{(\alpha + 1)(\alpha + 2)} \]

\[= \frac{2}{(\alpha + 1)(\alpha + 2)} \]

8. We let \(X \) denote the number of occupied tables. As in the hint, we define

\[X_i = \begin{cases} 1 & \text{if the } i \text{th arrival sits at a previously unoccupied table} \\ 0 & \text{otherwise} \end{cases} \]

and thus \(X = X_1 + \cdots + X_N \). So \(E[X] = E[X_1 + \cdots + X_N] = E[X_1] + \cdots + E[X_N] \). Since \(X_i \) only takes on the values 0 and 1, then \(E[X_i] = P(X_i = 1) \), which is the probability that the \(i \)th arrival sits a previously unoccupied table. This happens if and only if the \(i \)th arrival is not friends with any of the first \(i - 1 \) arrivals, so

\[E[X_i] = P(X_i = 1) = (1 - p)^{i-1} \]

Thus

\[E[X] = \sum_{i=1}^{N} (1 - p)^{i-1} = \frac{1 - (1 - p)^N}{1 - (1 - p)} = \frac{1 - (1 - p)^N}{p} \]
9a. The number of empty urns is $X = X_1 + \cdots + X_n$ where

$$X_i = \begin{cases}
1 & \text{if urn } i \text{ is empty} \\
0 & \text{otherwise}
\end{cases}$$

Only the balls numbered $i, i+1, i+2, \ldots, n$ can possibly go into urn i. The probability that ball i goes into urn i is $1/i$; the probability that ball $i+1$ goes into urn i is $1/(i+1)$; the probability that ball $i+2$ goes into urn i is $1/(i+2)$; etc., etc. So the probability that urn i is empty is $(1 - \frac{1}{i}) (1 - \frac{1}{i+1}) (1 - \frac{1}{i+2}) \cdots (1 - \frac{1}{n})$, or more simply

$$\left(\frac{i-1}{i} \right) \left(\frac{i}{i+1} \right) \left(\frac{i+1}{i+2} \right) \cdots \left(\frac{n-1}{n} \right) = \frac{i-1}{n}$$

So $E[X_i] = P(X_i = 1) = \frac{i-1}{n}$. Thus $E[X] = \sum_{i=1}^{n} \frac{i-1}{n} = \frac{1}{n} \sum_{i=1}^{n} (i - 1) = \frac{1}{n} \left(\frac{(n-1)n}{2} \right) = \frac{n-1}{2}$.

9b. There is only one way that none of the urns can be empty: Namely, the ith ball must go into the ith urn for each i. To see this, first note that the nth ball is the only ball that can go into the nth urn. Next, there are two balls, the $n-1$ and n ball that can go in urn $n-1$, but the nth ball is already committed to the nth urn, so ball $n-1$ must go into urn $n-1$. Next, there are three balls, the $n-2$, $n-1$, and n ball that can go in urn $n-2$, but balls n and $n-1$ are already committed to urns n and $n-1$, respectively, so ball $n-2$ must go into urn $n-2$. Similar reasoning continues.

So the probability that none of the urns are empty is $(\frac{1}{n}) (\frac{1}{n-1}) (\frac{1}{n-2}) \cdots (\frac{1}{1}) = \frac{1}{n!}$.

11. The number of changeovers is $X = X_2 + \cdots + X_n$ where

$$X_i = \begin{cases}
1 & \text{if a changeover occurs from the } (i-1)\text{st flip to the } i\text{th flip} \\
0 & \text{otherwise}
\end{cases}$$

So $E[X_i] = P(X_i = 1) = p(1-p) + (1-p)p = 2p(1-p)$. Thus $E[X] = (n-1)(2p)(1-p)$.

12a. The number of men who have a woman sitting next to them is $X = X_1 + \cdots + X_n$ where

$$X_i = \begin{cases}
1 & \text{if the } i\text{th man has a woman sitting next to him} \\
0 & \text{otherwise}
\end{cases}$$

So $E[X_i] = P(X_i = 1)$. There are two seats on the end of the aisle where a man can sit; for each such seat, the probability that he is sitting there is $1/(2n)$, and the probability that a woman is sitting next to him afterwards is $n/(2n-1)$. So the probability a specific man sits on the left or right end, with a woman next to him, is $\frac{1}{2n} \cdot \frac{n}{2n-1} = \frac{1}{2n-1}$. There are $2n-2$ sets in the middle of the row; for each such seat, the probability that he is sitting there is $1/(2n)$, and the probability that a woman is sitting next to him afterwards (only on his left; only on his right; both sides; respectively) is $\frac{n}{2n-1} \cdot \frac{n-1}{2n-2} + \frac{n}{2n-1} \cdot \frac{n}{2n-2} + \frac{n}{2n-1} \cdot \frac{n}{2n-2} = \frac{3n}{2(2n-1)}$. So the probability that a specific man sits in the middle, with a woman next to him, is $(2n-2) \frac{1}{2n} \cdot \frac{3n}{2(2n-1)} = \frac{3(2n-2)}{4(2n-1)}$. So the total probability is $E[X_i] = P(X_i = 1) = \frac{1}{2n-1} + \frac{3(2n-2)}{4(2n-1)} = \frac{3n}{2(2n-1)}$. Thus $E[X] = n \left(\frac{3n}{2(2n-1)} \right) = \frac{n(3n-1)}{2(2n-1)}$.

12b. If the group is randomly seated at a round table, then we write $X = X_1 + \cdots + X_n$ where

$$X_i = \begin{cases}
1 & \text{if the } i\text{th man has a woman sitting next to him} \\
0 & \text{otherwise}
\end{cases}$$
So $E[X_i] = P(X_i = 1)$. Regardless of where the ith man sits, the probability that a woman is sitting next to him afterwards (only on his left; only on his right; both sides; respectively) is $\frac{n}{2n-1} \frac{n-1}{2n-2} + \frac{n-1}{2n-1} \frac{n}{2n-2} + \frac{n}{2n-1} \frac{n-1}{2n-2} = \frac{3n}{2(2n-1)}$. So $E[X_i] = \frac{3n}{2(2n-1)}$. Thus $E[X] = n \left(\frac{3n}{2(2n-1)} \right) = \frac{3n}{2(2n-1)}$.

13. The number of people whose age matches their card is $X = X_1 + \cdots + X_{1000}$ where

$$X_i = \begin{cases} 1 & \text{if the } i\text{th person’s age matches his card} \\ 0 & \text{otherwise} \end{cases}$$

So $E[X_i] = P(X_i = 1) = \frac{1}{1000}$. Thus $E[X] = 1000(1/1000) = 1$.

19a. Let X denote the number of insects that are caught before the first type 1 catch. Each insect is of type 1 with probability p_1, and is not of type 1 with probability $1 - p_1$, independent of all other catches. So X is a geometric random variable with probability of success p_1. So $E[X] = 1/p_1$.

19b. For $2 \leq i \leq r$, let Y_i indicate whether a type i insect is caught before a type 1 insect, i.e., $Y_i = 1$ if a type i insect is caught before a type 1 insect, and $Y_i = 0$ otherwise. Then $E[Y_i] = P(Y_i = 1)$. Let A_i denote the event that a type i insect is caught for the first time on the jth catch, and none of the first $i - 1$ catches are type 1. So the A_j’s are distinct events, and $\bigcup_{j=1}^{\infty} A_j$ denotes the event that a type i insect is caught before a type 1 insect.

So

$$E[Y_i] = P(Y_i = 1) = P \left(\bigcup_{j=1}^{\infty} A_j \right) = \sum_{j=1}^{\infty} P(A_j) = \sum_{j=1}^{\infty} (1 - p_1 - p_i)^{j-1}p_i$$

and thus

$$E[Y_i] = \frac{p_i}{1 - (1 - p_1 - p_i)} = \frac{p_i}{p_1 + p_i}$$

Note that $Y_2 + \cdots + Y_r$ is the total number of types of insects that are caught before the first type 1 catch. So

$$E[Y_2 + \cdots + Y_r] = \sum_{i=2}^{r} E[Y_i] = \sum_{i=2}^{r} \frac{p_i}{p_1 + p_i}$$

26a. First, we note that $0 < \max(X_1, \ldots, X_n) < 1$. Then we note that, for $0 < a < 1$, we have $\max(X_1, \ldots, X_n) \leq a$ if and only if $X_i \leq a$ for all i, which—since the X_i’s are independent—happens with probability $\prod_{i=1}^{n} P(X_i \leq a) = \prod_{i=1}^{n} a = a^n$.

Let $Y = \max(X_1, \ldots, X_n)$. So $P(Y > y) = 1 - y^n$. We can use the fact that $E[Y] = \int_{0}^{\infty} P(Y > y) \, dy$ since Y is nonnegative (see page 211), so

$$E[Y] = \int_{0}^{1} (1 - y^n) \, dy = \left[y - \frac{y^{n+1}}{n+1} \right]_{y=0}^{1} = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

Alternately, we can write $F_Y(y) = P(Y \leq y) = y^n$. Thus $f_Y(y) = ny^{n-1}$, and we conclude

$$E[Y] = \int_{0}^{1} y(ny^{n-1}) \, dy = \int_{0}^{1} ny^n \, dy = \frac{ny^{n+1}}{n+1} \bigg|_{y=0}^{1} = \frac{n}{n+1}$$

26b. First, we note that $0 < \min(X_1, \ldots, X_n) < 1$. Then we note that, for $0 < a < 1$, we have $\min(X_1, \ldots, X_n) > a$ if and only if $X_i > a$ for all i, which—since the X_i’s are independent—happens with probability $\prod_{i=1}^{n} P(X_i > a) = \prod_{i=1}^{n} (1 - a) = (1 - a)^n$.

Let \(Y = \min(X_1, \ldots, X_n) \). We can use the fact that \(E[Y] = \int_0^\infty P(Y > y) \, dy \) since \(Y \) is nonnegative (see page 211), so

\[
E[Y] = \int_0^1 (1 - y)^n = \left. -\frac{(1 - y)^{n+1}}{n+1} \right|_{y=0}^1 = \frac{1}{n+1}
\]

Alternately, we can write \(F_Y(y) = P(Y \leq y) = 1 - P(Y > y) = 1 - (1 - y)^n \). Thus \(f_Y(y) = n(1 - y)^{n-1} \), and we conclude

\[
E[Y] = \int_0^1 (y)(n(1 - y)^{n-1}) \, dy = \frac{1}{n+1}
\]

using integration by parts.

34a. Let \(X_i \) indicate whether or not the \(i \)th wife sits next to her husband. In other words, define

\[
X_i = \begin{cases}
1 & \text{if the } i \text{th wife sits next to her husband} \\
0 & \text{otherwise}
\end{cases}
\]

After the wife is seated, her husband has 19 available seats. Two of these seats are next to his wife. Since \(X_i \) only takes on the values 0 or 1, thus \(E[X_i] = P(X_i = 1) = 2/19 \). So the expected number of wives who sit next to their husbands is

\[
E \left[\sum_{i=1}^{10} X_i \right] = \sum_{i=1}^{10} E[X_i] = \sum_{i=1}^{10} 2/19 = 20/19.
\]

34b. We know that \(\text{Var} \left(\sum_{i=1}^{10} X_i \right) = \sum_{i=1}^{10} \text{Var}(X_i) + 2 \sum_{i<j} \text{Cov}(X_i, X_j) \). We see that

\[
E[X_i^2] = 1^2 P(X_i = 1) + 0^2 P(X_i = 0) = 2/19 \quad \text{for each } i.
\]

Therefore \(\text{Var}(X_i) = E[X_i^2] - (E[X_i])^2 = \frac{2}{19} - \left(\frac{2}{19} \right)^2 = \frac{34}{361} \) for each \(i \). For \(i \neq j \), we notice that \(X_iX_j \) equals 1 if the \(i \)th and \(j \)th wives are each seated next to their husbands, and \(X_iX_j = 0 \) otherwise. So \(E[X_iX_j] = P(X_iX_j = 1) \). The probability that the \(i \)th wife sits next to her husband is \(2/19 \). Given that the \(i \)th wife sits next to her husband, then 18 seats in a row remain empty. The probability that the wife sits on the end of such a row with her husband next to her is \((2)(1/18)(1/17) \); the probability that the wife is seated strictly within the row, and her husband is next to her, is \((16)(1/18)(2/17) \). Thus, \(E[X_iX_j] = P(X_iX_j = 1) = \frac{2}{19} \left(\frac{2}{18} + \frac{1}{17} \right) = \frac{36}{361} \). So \(\text{Cov}(X_iX_j) = E[X_iX_j] - E[X_i]E[X_j] = \frac{36}{361} - \left(\frac{2}{19} \right) \left(\frac{2}{19} \right) = \frac{36}{361} \). Thus \(\text{Var} \left(\sum_{i=1}^{10} X_i \right) = \sum_{i=1}^{10} \frac{34}{361} + 2 \sum_{i<j} \frac{36}{361} = (10) \left(\frac{34}{361} \right) + (2)(45) \left(\frac{36}{361} \right) = 360/361 \).

36. We write \(X_i \) to indicate if the \(i \)th roll is a “1” or not. Similarly, we write \(Y_i \) to indicate if the \(i \)th roll is a “2” or not. In other words,

\[
X_i = \begin{cases}
1 & \text{if the } i \text{th roll is a “1”} \\
0 & \text{otherwise}
\end{cases} \quad Y_i = \begin{cases}
1 & \text{if the } i \text{th roll is a “2”} \\
0 & \text{otherwise}
\end{cases}
\]

Thus \(X = \sum_{i=1}^n X_i \) and \(Y = \sum_{i=1}^n Y_i \). We also know that

\[
\text{Cov}(X,Y) = \text{Cov} \left(\sum_{i=1}^n X_i, \sum_{j=1}^n Y_j \right) = \sum_{i=1}^n \sum_{j=1}^n \text{Cov}(X_i, Y_j)
\]

We recall \(\text{Cov}(X_i, Y_j) = E[X_iY_j] - E[X_i]E[Y_j] \).

For \(i = j \), we see that \(X_iY_j = 0 \) since the same roll cannot be both “1” and “2”. So, for \(i = j \), we have \(E[X_iY_j] = 0 \), and of course \(E[X_i] = E[Y_j] = 1/6 \), so \(\text{Cov}(X_i, Y_j) = -1/36 \).
For $i \neq j$, we see that $X_iY_j = 1$ with probability $1/36$, so $E[X_iY_j] = 1/36$, and thus $\text{Cov}(X_i, Y_j) = \frac{1}{36} - \left(\frac{1}{6}\right) \left(\frac{1}{6}\right) = 0$. (An immediate way to see that $\text{Cov}(X_i, Y_j) = 0$ is to notice that X_i and Y_j are independent when $i \neq j$.)

Thus

$$\text{Cov}(X, Y) = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov}(X_i, Y_j) = \sum_{i=1}^{n} \text{Cov}(X_i, Y_i) + \sum_{i=1}^{n} \sum_{j \neq i} \text{Cov}(X_i, Y_j)$$

$$= \sum_{i=1}^{n} \frac{1}{36} + \sum_{i=1}^{n} \sum_{j \neq i} 0 = -n/36$$

38. Note $E[XY] = \int_{0}^{\infty} \int_{0}^{\infty} (xy) \left(\frac{2e^{-2x}}{x}\right) dy

\text{d}x = 1/4$, and $E[X] = \int_{0}^{\infty} \int_{0}^{\infty} (x) \left(\frac{2e^{-2x}}{x}\right) dy

\text{d}x = 1/2$ and $E[Y] = \int_{0}^{\infty} \int_{0}^{\infty} (y) \left(\frac{2e^{-2y}}{y}\right) dy

\text{d}x = 1/4$, so $\text{Cov}(X, Y) = E[XY] - E[X]E[Y] = \frac{1}{4} - \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = 1/8$.

40. We compute $E[XY] = \int_{0}^{\infty} \int_{0}^{\infty} (xy) \left(\frac{e^{-\frac{(x+y)}{y}}}{y}\right) dx \text{d}y = 2$, and also we have $E[X] = \int_{0}^{\infty} \int_{0}^{\infty} (x) \left(\frac{e^{-\frac{(x+y)}{y}}}{y}\right) dx \text{d}y = 1$, and $E[Y] = \int_{0}^{\infty} \int_{0}^{\infty} (y) \left(\frac{e^{-\frac{(x+y)}{y}}}{y}\right) dy \text{d}x = 1$, so $\text{Cov}(X, Y) = E[XY] - E[X]E[Y] = 2 - (1)(1) = 1$.

To perform these integrations, it is helpful to note (as in class) that $\frac{1}{y}e^{-x/y}$ is the density of an exponential distribution with $\lambda = 1/y$, so $\int_{0}^{\infty} \frac{1}{y}e^{-x/y} dx = 1$ (just because $\frac{1}{y}e^{-x/y}$ is a density function) and also $\int_{0}^{\infty} (x) \frac{1}{y}e^{-x/y} dx = \frac{1}{\lambda} = y$ is the mean of the exponential distribution.

42a. Let X_i indicate whether or not the ith pair consists of a man and a woman. In other words, define

$$X_i = \begin{cases}
1 & \text{if the } i\text{th pair consists of a man and a woman} \\
0 & \text{otherwise}
\end{cases}$$

Since X_i only takes on the values 0 or 1, thus $E[X_i] = P(X_i = 1)$. There are $\binom{20}{10}$ = 190 ways that the ith pair can be selected. There are $\binom{10}{1}\binom{10}{1} = 100$ ways that the pair consists of a man and a woman. So $E[X_i] = 100/190 = 10/19$. So the expected number of pairs consisting of a man and a woman is $E \left[\sum_{i=1}^{10} X_i \right] = \sum_{i=1}^{10} E[X_i] = \sum_{i=1}^{10} 10/19 = 100/19$.

We know that $\text{Var} \left(\sum_{i=1}^{10} X_i \right) = \sum_{i=1}^{10} \text{Var}(X_i) + 2 \sum_{i<j} \text{Cov}(X_i, X_j)$. We see that $E[X_i^2] = 1^2 P(X_i = 1) + 0^2 P(X_i = 0) = 10/19$ for each i. Therefore $\text{Var}(X_i) = E[X_i^2] - (E[X_i])^2 = \frac{10}{19} - \left(\frac{10}{19}\right)^2 = \frac{90}{361}$ for each i. For $i \neq j$, we notice that X_iX_j equals 1 if the ith and jth pairs each consist of a man and a woman, and $X_iX_j = 0$ otherwise. So $E[X_iX_j] = P(X_iX_j = 1) = \binom{10}{1}\binom{8}{1} = \frac{90}{361}$. So $\text{Cov}(X_iX_j) = E[X_iX_j] - E[X_i]E[X_j] = \frac{90}{361} - \left(\frac{10}{19}\right) \left(\frac{10}{19}\right) = 10/6137$.

Thus $\text{Var} \left(\sum_{i=1}^{10} X_i \right) = \sum_{i=1}^{10} \frac{90}{361} + 2 \sum_{i<j} \frac{10}{6137} = \binom{10}{1} \left(\frac{90}{361}\right) + (2)(45) \left(\frac{10}{6137}\right) = \frac{16200}{6137}$.?
Let Y_i indicate whether or not the ith pair consists of a married couple. In other words, define

$$Y_i = \begin{cases}
1 & \text{if the } i\text{th pair consists of a married couple} \\
0 & \text{otherwise}
\end{cases}$$

Since Y_i only takes on the values 0 or 1, thus $E[Y_i] = P(Y_i = 1)$. There are $\binom{20}{2} = 190$ ways that the ith pair can be selected. There are 10 ways that the pair consists of a married couple. So $E[Y_i] = 10/190 = 1/19$. So the expected number of pairs consisting of a married couple is $E\left[\sum_{i=1}^{10} Y_i\right] = \sum_{i=1}^{10} E[Y_i] = \sum_{i=1}^{10} 1/19 = 10/19$.

We know that $\text{Var}(\sum_{i=1}^{10} Y_i) = \sum_{i=1}^{10} \text{Var}(Y_i) + 2\sum_{i<j} \text{Cov}(Y_i, Y_j)$. We see that $E[Y_i^2] = 1^2P(Y_i = 1) + 0^2P(Y_i = 0) = 1/19$ for each i. Therefore $\text{Var}(Y_i) = E[Y_i^2] - (E[Y_i])^2 = \frac{1}{19} - \left(\frac{1}{19}\right)^2 = \frac{18}{361}$ for each i. For $i \neq j$, we notice that $Y_i Y_j$ equals 1 if the ith and jth pairs each consist of a married couple, and $Y_i Y_j = 0$ otherwise. So $E[Y_i Y_j] = P(Y_i Y_j = 1)$. The probability that the ith pair consists of a married couple is $1/19$. Given that the ith pair consists of a married couple, then 9 men and 9 woman remain to form the other 9 pairs. So $\text{Var}(\sum_{i=1}^{10} Y_i) = \sum_{i=1}^{10} \frac{18}{361} + 2\sum_{i<j} \text{Cov}(Y_i, Y_j)$.

48a. The number of rolls X necessary to obtain a “6” is geometric with probability of success $p = 1/6$, and thus $E[X] = 1/p = 6$.

48b. Given that $Y = 1$, we know that the first outcome is a “5”. After the first roll, the number of additional rolls necessary to obtain a “6” is geometric with probability of success $p = 1/6$, so the expected number of additional rolls is 6. So the total number of expected rolls in this conditional case is $E[X \mid Y = 1] = 1 + 6 = 7$.

48b. Given that $Y = 5$, we know that none of the first four rolls is a “5”, and the fifth role is a “5”. So $P(X = 1 \mid Y = 5) = \frac{1}{5}$, and $P(X = 2 \mid Y = 5) = \left(\frac{4}{5}\right)\left(\frac{1}{6}\right)$, and $P(X = 3 \mid Y = 5) = \left(\frac{4}{5}\right)^2\left(\frac{1}{6}\right)$, and $P(X = 4 \mid Y = 5) = \left(\frac{4}{5}\right)^3\left(\frac{1}{6}\right)$. Also $P(X = 5 \mid Y = 5) = 0$. For the remaining of the possibilities, we have $P(X = 6 \mid Y = 5) = \left(\frac{4}{5}\right)^4\left(\frac{1}{6}\right)$, and $P(X = 7 \mid Y = 5) = \left(\frac{4}{5}\right)^4\left(\frac{5}{6}\right)\left(\frac{1}{5}\right)$, and $P(X = 8 \mid Y = 5) = \left(\frac{4}{5}\right)^4\left(\frac{5}{6}\right)^2\left(\frac{1}{5}\right)$, and in general, $P(X = i \mid Y = 5) = \left(\frac{4}{5}\right)^4\left(\frac{5}{6}\right)^{i-6}\left(\frac{1}{6}\right)$ for $i \geq 6$. Thus

$$E[X \mid Y = 5] = (1)\left(\frac{1}{5}\right) + (2)\left(\frac{4}{5}\right)\left(\frac{1}{5}\right) + (3)\left(\frac{4}{5}\right)^2\left(\frac{1}{5}\right) + (4)\left(\frac{4}{5}\right)^3\left(\frac{1}{5}\right) + \sum_{i=6}^{\infty} i\left(\frac{4}{5}\right)^4\left(\frac{5}{6}\right)^{i-6}\left(\frac{1}{6}\right)$$

We can pull the $\left(\frac{4}{5}\right)^4$ outside of the sum above, and then change the index of “i” by 5 afterwards, to obtain

$$E[X \mid Y = 5] = \frac{821}{625} + \left(\frac{4}{5}\right)^4 \sum_{i=1}^{\infty} (i+5)\left(\frac{5}{6}\right)^{i-1}\left(\frac{1}{6}\right)$$

We note that, if Z is geometric with probability of success $p = 1/6$, then the summation $\sum_{i=1}^{\infty} (i+5)\left(\frac{5}{6}\right)^{i-1}\left(\frac{1}{6}\right)$ found in the last line above is just $E[Z+5] = E[Z] + 5 = 6 + 5$.

Therefore, plugging this result in, we obtain

\[E[X \mid Y = 5] = \frac{821}{625} + \left(\frac{4}{5}\right)^4 (6 + 5) = \frac{3637}{625} \]

50. We first compute the marginal density of \(Y \),

\[f_Y(y) = \int_0^\infty \frac{e^{-x/y}e^{-y}}{y} dx = e^{-y} \]

for \(y > 0 \) and of course \(f_Y(y) = 0 \) for \(y \leq 0 \). So the conditional density of \(X \) given \(Y \) is

\[f_{X \mid Y}(x \mid y) = \frac{e^{-x/y}e^{-y}/y}{e^{-y}} = \frac{e^{-x/y}}{y} \]

Therefore, \(X \) conditioned on having \(Y = y \) is exponential with parameter \(\lambda = 1/y \). Now we compute the desired conditional second moment:

\[E[X^2 \mid Y = y] = \int_{-\infty}^{\infty} x^2 f_{X \mid Y}(x \mid y) dx = \int_0^\infty (x^2) \left(\frac{e^{-x/y}}{y}\right) dx = 2y^2 \]

A different method, without computing the integral on the previous line, is to just recall that an exponential random variable with parameter \(\lambda \) has mean \(\frac{1}{\lambda} \) and variance \(\frac{1}{\lambda^2} \) and thus second moment \(\frac{1}{\lambda^2} + \left(\frac{1}{\lambda}\right)^2 = \frac{2}{\lambda^2} \). So the second moment of \(X \) conditioned on \(Y = y \) is just \(\frac{2}{\lambda^2} = 2y^2 \).

53. We write \(X \) for the number of days until the prisoner reaches freedom, and we write \(Y \) for the door he selects. Since \(E[X] = E[E[X \mid Y]] \), then

\[E[X] = E[X \mid Y = 1]P(Y = 1) + E[X \mid Y = 2]P(Y = 2) + E[X \mid Y = 3]P(Y = 3) = (E[X] + 2)(.5) + (E[X] + 4)(.3) + (1)(.2) \]

Thus \(E[X] = 12 \).

56. Let \(X_i \) indicate whether or not the elevator stops on the \(i \)th floor. In other words, define

\[X_i = \begin{cases} 1 & \text{if the elevator stops on the } i \text{th floor} \\ 0 & \text{otherwise} \end{cases} \]
Since X_i only takes on the values 0 or 1, thus $E[X_i] = P(X_i = 1)$. We write Y for the number of people who enter the elevator, so Y is Poisson with parameter $\lambda = 10$. Thus

$$P(X_i = 1) = \sum_{y=0}^{\infty} P(X_i = 1 \text{ and } Y = y)$$

$$= \sum_{y=0}^{\infty} P(X_i = 1 | Y = y)P(Y = y)$$

$$= \sum_{y=0}^{\infty} \left[1 - \left(\frac{N - 1}{N} \right)^y \right] e^{-10} \frac{10^y}{y!}$$

$$= \sum_{y=0}^{\infty} e^{-10} \frac{10^y}{y!} - e^{-10} \sum_{y=0}^{\infty} \frac{1}{y!} 10^y \left(\frac{N - 1}{N} \right)^y$$

$$= 1 - e^{-10} e^{10(N-1)/N}$$

$$= 1 - e^{-10/N}$$

So $E[X_i] = 1 - e^{-10/N}$. So the expected number of stops is $E \left[\sum_{i=1}^{N} X_i \right] = \sum_{i=1}^{N} E[X_i] = \sum_{i=1}^{N} (1 - e^{-10/N}) = N(1 - e^{-10/N})$.

58a. Let X denote the total number of flips. We write $q = 1 - p$ as the probability of tails. Let Y denote whether a head or a tail appears on the first try, by writing

$$Y = \begin{cases} H & \text{if "heads" appears on the first flip} \\ T & \text{if "tails" appears on the first flip} \end{cases}$$

Then $E[X] = E[E[X|Y]] = E[X | Y = H]P(Y = H) + E[X | Y = T]P(Y = T)$. Of course $P(Y = H) = p$ and $P(Y = T) = q$. Given that $Y = H$, then the number of additional flips until the first tail appears is geometric with probability of success q, so we expect $\frac{1}{q}$ additional flips. Thus $E[X | Y = H] = 1 + \frac{1}{q}$. Similarly, given that $Y = T$, then the number of additional flips until the first head appears is geometric with probability of success p, so we expect $\frac{1}{p}$ additional flips. Thus $E[X | Y = T] = 1 + \frac{1}{p}$. So

$$E[X] = \left(1 + \frac{1}{q} \right) (p) + \left(1 + \frac{1}{p} \right) (q) = 1 + \frac{p}{q} + \frac{q}{p} = \frac{1 - p + p^2}{pq}$$

Another possible method was suggested to me by Ms. Xueyao Chen this week. The expected value of X can be written directly as

$$E[X] = \sum_{n=2}^{\infty} np^{n-1}q + \sum_{n=2}^{\infty} nq^{n-1}p$$

We know that the expected value of a geometric random variable with probability of success q is $\frac{1}{q}$, and thus $\sum_{n=1}^{\infty} np^{n-1}q = \frac{1}{q}$. Subtracting the “$n = 1$” term on both sides yields $\sum_{n=2}^{\infty} np^{n-1}q = \frac{1}{q} - q$. Similarly, we know that the expected value of a geometric random variable with probability of success p is $\frac{1}{p}$, and thus $\sum_{n=1}^{\infty} nq^{n-1}p = \frac{1}{p}$. Subtracting the
“\(n = 1 \)” term on both sides yields \(\sum_{n=2}^{\infty} nq^{n-1}p = \frac{1}{p} - p \). Therefore, putting these results together, we have

\[
E[X] = \frac{1}{q} - q + \frac{1}{p} - p = \frac{1}{q} + \frac{1}{p} - 1 = \frac{1-p + p^2}{pq}
\]

58b. The last flip lands heads if and only if the first flip lands tails. So the last flip lands heads with probability \(q \). (Remember, there are only two kinds of possibilities in this problem: either we have \(H, H, H, \ldots, H, T \) or we have \(T, T, \ldots, T, H \).)

THEORETICAL EXERCISES

5. As suggested, let \(X \) denote the number of the \(A_i \) that occur. Let \(X_i \) indicate if \(A_i \) occurs, i.e., \(X_i = 1 \) if \(A_i \) occurs and \(X_i = 0 \) otherwise. So \(X = \sum_{i=1}^{n} X_i \), and \(E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} P(A_i) \).

Now we observe that \(C_k = 1 \) if and only if at least \(k \) of the \(A_i \)'s occur, which happens if and only if \(X \geq k \). So \(\sum_{i=1}^{n} P(C_k) = \sum_{i=1}^{n} P(X \geq k) = \sum_{0}^{n-1} P(X > k) = \sum_{0}^{\infty} P(X > k) = E[X], \) where the third equality is true since \(P(X > k) = 0 \) for \(k \geq n \).

So we proved \(\sum_{i=1}^{n} P(A_i) = E[X] = \sum_{i=1}^{n} P(C_k) \).

9. Let \(X_i \) indicate if a new run of exactly \(k \) heads begins on the \(i \)th flip, i.e., \(X_i = 1 \) if a new run of exactly \(k \) heads begins on the \(i \)th flip, or \(X_i = 0 \) otherwise. So \(E[X_i] = P(X_i = 1) \).

First we consider the trivial case where \(k = n \). In this case, there is one run of length \(k \) with probability \(p^k \), and zero runs of length \(k \) otherwise, so the expected number of runs of length \(k \) is exactly \(p^k \).

Throughout the remainder of the problem, we assume that \(k < n \). (This keeps Cases I and III distinct in the discussion below.)

Note that \(P(X_i = 1) = 0 \) for \(i > n - k + 1 \), because a run of heads that begins on flip \(n - k + 2 \) (or later) will not have time to complete \(k \) heads before the experiment ends.

Case I. For \(i = n - k + 1 \), we only require tails on the \((n-k)\)th toss, and heads on tosses \(n - k + 1, n - k + 2, \ldots, n - k + k \). So \(E[X_{n-k+1}] = P(X_{n-k+1}) = (1-p)p^k \).

Case II. For \(1 < i < n - k + 1 \), we require tails on the \((i-1)\)st toss and the \((i+k)\) toss, and heads on tosses \(i, i+1, \ldots, i+k-1 \), so \(E[X_i] = P(X_i) = (1-p)^2p^k \).

Case III. For \(i = 1 \), we require tails on the \((k+1)\)st toss, and heads on tosses 1, 2, \ldots, \(k \), so \(E[X_1] = P(X_1) = (1-p)p^k \).

So the total expected number of runs of exactly \(k \) heads is \(E[X_1 + \cdots + X_{n-k+1}] = E[X_1] + E[X_2] + \cdots + E[X_{n-k+1}] = 2(1-p)p^k + (n-k-1)(1-p)^2p^k \).

19. We observe that \(\text{Cov}(X + Y, X - Y) = E[(X + Y)(X - Y)] - E[X + Y]E[X - Y] \), since covariance is the expected value of the product, minus the product of the expected values.

So, we compute

\[
= E[X^2 - Y^2] - (E[X] + E[Y])(E[X] - E[Y])
= E[X^2] - E[Y^2] - (E[X])^2 + (E[Y])^2
\]
Now we use the fact that X and Y are identically distributed, so $E[X^2] = E[Y^2]$ and $(E[X])^2 = (E[Y])^2$. Thus $\text{Cov}(X + Y, X - Y) = 0$.

22. Consider $Y = a + bX$. Then if $b > 0$, we have

$$
\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = \frac{\text{Cov}(X, a + bX)}{\sqrt{\text{Var}(X)\text{Var}(a + bX)}} = \frac{\text{Cov}(X, a) + \text{Cov}(X, bX)}{\sqrt{b^2\text{Var}(X)\text{Var}(X)}} = \frac{\text{Cov}(X, a) + b\text{Cov}(X, X)}{b\text{Var}(X)} = 0 + \frac{b\text{Var}(X)}{b\text{Var}(X)} = 1.
$$

where the last equality is true since $\text{Cov}(X, a) = E[Xa] - E[X]E[a] = aE[X] - aE[X] = 0$. So we conclude that $\rho(X, Y) = 1$.

If $b < 0$, we have

$$
\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = \frac{\text{Cov}(X, a + bX)}{\sqrt{\text{Var}(X)\text{Var}(a + bX)}} = \frac{\text{Cov}(X, a) + \text{Cov}(X, bX)}{\sqrt{b^2\text{Var}(X)\text{Var}(X)}} = \frac{\text{Cov}(X, a) + b\text{Cov}(X, X)}{-b\text{Var}(X)} = \frac{0 + b\text{Var}(X)}{-b\text{Var}(X)} = 1.
$$

So we conclude that $\rho(X, Y) = -1$.

33. Let X denote the number of flips that are needed until a string of r heads appears. Let Y denote the number of flips at the beginning of the process until the first tail appears. If $Y > r$, then the string of r heads appears at the start, and $X = r$ in this case. If $Y \leq r$,
then the process starts again after \(Y \) flips. The probability that \(Y = i \) is \((1 - p)p^{i-1}\). So

\[
E[X] = E[E[X|Y]]
\]

\[
= \sum_{i=1}^{\infty} E[X \mid Y = i] P(Y = i)
\]

\[
= \sum_{i=1}^{\infty} E[X \mid Y = i](1 - p)p^{i-1}
\]

\[
= \sum_{i=1}^{r} E[X \mid Y = i](1 - p)p^{i-1} + \sum_{i=r+1}^{\infty} E[X \mid Y = i](1 - p)p^{i-1}
\]

\[
= \sum_{i=1}^{r} (i + E[X])(1 - p)p^{i-1} + \sum_{i=r+1}^{\infty} r(1 - p)p^{i-1}
\]

\[
= (1 - p) \sum_{i=1}^{r} ip^{i-1} + (1 - p)E[X] \sum_{i=1}^{r} p^{i-1} + (1 - p)r \sum_{i=r+1}^{\infty} p^{i-1}
\]

\[
= (1 - p) \sum_{i=1}^{r} \frac{d}{dp} p^i + (1 - p)E[X] \frac{1 - p^r}{1 - p} + (1 - p)r \frac{p^r}{1 - p}
\]

\[
= (1 - p) \frac{d}{dp} \sum_{i=1}^{r} p^i + E[X](1 - p^r) + rp^r
\]

Which yields

\[
p^r E[X] = (1 - p) \frac{d}{dp} \frac{p - p^{r+1}}{1 - p} + rp^r
\]

or equivalently,

\[
p^r E[X] = (1 - p) \frac{1 + rp^{r+1} - rp^r - p^r}{(1 - p)^2} + rp^r
\]

i.e., \(p^r E[X] = \frac{1 - p^r}{1 - p} \), so we conclude \(E[X] = \frac{1}{p^r} \frac{1 - p^r}{1 - p} \).

34a. As suggested, let \(T_r \) denote the number of flips required to obtain a run of \(r \) consecutive heads. Then \(E[T_r \mid T_{r-1} = i] = (p)(i + 1) + (1 - p)(i + 1 + E[T_i]) \); to see this, just note that after \(r - 1 \) consecutive heads have already appeared (at the end of \(i \) tosses), one more head is sufficient to complete \(r \) consecutive tosses, which happens with probability \(p \) (resulting in a total of \(i + 1 \) tosses), or a tail appears, with probability \(1 - p \), and the process starts again, with \(i + 1 \) tosses already having been completed. Thus, no matter what value of \(i \) is used, we have

\[
E[T_r \mid T_{r-1}] = (p)(T_{r-1} + 1) + (1 - p)(T_{r-1} + 1 + E[T_i])
\]

34b. Taking expectations on both sides, we obtain

\[
E[E[T_r \mid T_{r-1}]] = E[(p)(T_{r-1} + 1) + E[(1 - p)(T_{r-1} + 1 + E[T_i])]
\]

which simplifies to

\[
E[T_r] = (p)(E[T_{r-1}] + 1) + (1 - p)(E[T_{r-1}] + 1 + E[T_i])
\]

or equivalently \(E[T_r] = \frac{1}{p} E[T_{r-1}] + \frac{1}{p} \).
34c. We see that T_1 is a geometric random variable with probability of success p, so $E[T_1] = \frac{1}{p}$.

34d. We have $E[T_2] = \frac{1}{p^2} + \frac{1}{p}$, and $E[T_3] = \frac{1}{p^3} + \frac{1}{p^2} + \frac{1}{p}$, etc., etc., and in general $E[T_r] = \sum_{i=1}^r (1/p)^i = \frac{\frac{1}{p} - \frac{1}{p^{r+1}}}{1 - \frac{1}{p}} = \frac{1 - p^{-r}}{p-1} = \frac{p^{-r-1}}{1-p} = \frac{1 - p^r}{p^{-1} - p}$.