PROBLEMS

We always let “Z” denote a standard normal random variable in the computations below. We simply use the chart from page 222 of the Ross book, when working with a standard normal random variable; of course, a more accurate computation is possible using the computer.

2. We first compute
\[
1 = \int_0^{\infty} Cxe^{-x/2} dx = C \left(\frac{e^{-x/2}}{-1/2} \bigg|_{x=0}^{\infty} - \int_0^{\infty} e^{-x/2} dx \right)
\]
\[
= 2C \int_0^{\infty} e^{-x/2} dx = -4Ce^{-x/2} \bigg|_{x=0}^{\infty} = 4C
\]

Thus \(C = 1/4\). Now we compute the probability that the system functions for at least 5 months:
\[
P(X \geq 5) = \int_5^{\infty} \frac{1}{4}xe^{-x/2} dx = \frac{1}{4} \left(\frac{e^{-x/2}}{-1/2} \bigg|_{x=5}^{\infty} - \int_5^{\infty} e^{-x/2} dx \right)
\]
\[
= \frac{1}{4} \left(10e^{-5/2} + 2 \int_5^{\infty} e^{-x/2} dx \right) = \frac{1}{4} \left(10e^{-5/2} - 4e^{-5/2} \bigg|_{x=5}^{\infty} \right) = \frac{7}{2} e^{-5/2}
\]

3a. The function
\[
f(x) = \begin{cases}
C(2x - x^3) & \text{if } 0 < x < 5/2 \\
0 & \text{otherwise}
\end{cases}
\]

cannot be a probability density function. To see this, note \(2x - x^3 = -x(x - \sqrt{2})(x + \sqrt{2})\). If \(C = 0\), then \(f(x) = 0\) for all \(x\), so \(\int_{-\infty}^{\infty} f(x) = 0\), but every probability density function has \(\int_{-\infty}^{\infty} f(x) = 1\). If \(C > 0\), then \(f(x) < 0\) on the range \(x \in (0, \sqrt{2})\), but every probability density function has \(f(x) \geq 0\) for all \(x\). If \(C < 0\), then \(f(x) < 0\) on the range \(x \in (\sqrt{2}, 5/2)\), but every probability density function has \(f(x) \geq 0\) for all \(x\). So no value of \(C\) will satisfy all of the properties needed for a probability density function.

3b. The function
\[
f(x) = \begin{cases}
C(2x - x^2) & \text{if } 0 < x < 5/2 \\
0 & \text{otherwise}
\end{cases}
\]
cannot be a probability density function. To see this, note \(2x - x^2 = -x(x-2)\). If \(C = 0\), then \(f(x) = 0\) for all \(x\), so \(\int_{-\infty}^{\infty} f(x) = 0\), but every probability density function has \(\int_{-\infty}^{\infty} f(x) = 1\). If \(C > 0\), then \(f(x) < 0\) on the range \(x \in (0, 2)\), but every probability density function has \(f(x) \geq 0\) for all \(x\). If \(C < 0\), then \(f(x) < 0\) on the range \(x \in (2, 5/2)\), but every probability density function has \(f(x) \geq 0\) for all \(x\). So no value of \(C\) will satisfy all of the properties needed for a probability density function.
5. Let \(X \) denote the volume of sales in a week, given in thousands of gallons. We have the density of \(X \), and we want \(a \) with \(P(X > a) = .01 \). Note that we need \(0 < a < 1 \). We have
\[
.01 = P(X > a) = \int_{a}^{\infty} f(x) \, dx = \int_{a}^{1} 5(1-x)^4 \, dx + \int_{1}^{\infty} 0 \, dx = 5 \left(\frac{1-x}{5} \right)^{4} \bigg|_{x=a}^{1} = (1-a)^{5}
\]
So \(.01 = (1-a)^{5} \), and thus \(\sqrt[5]{.01} = 1-a \), so \(a = 1 - \sqrt[5]{.01} \approx .6019 \).

6a. We compute
\[E[X] = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{-\infty}^{0} (x) (0) \, dx + \int_{0}^{\infty} (x)(4) (e^{-x/2}) \, dx = \frac{1}{4} \int_{0}^{\infty} x^2 e^{-x/2} \, dx \]
\[
= \frac{1}{4} \left(x^2 e^{-x/2} \right|_{x=0}^{\infty} - \int_{0}^{\infty} 2x e^{-x/2} \, dx \right) = \frac{1}{4} \left(x^2 e^{-x/2} \right|_{x=0}^{\infty} + 4 \int_{0}^{\infty} x e^{-x/2} \, dx \right) \]
\[
= \frac{1}{4} \left(x^2 e^{-x/2} \right|_{x=0}^{\infty} + 4x e^{-x/2} \right|_{x=0}^{\infty} - 4 \int_{0}^{\infty} e^{-x/2} \, dx \right) \]
\[
= \frac{1}{4} \left(x^2 e^{-x/2} \right|_{x=0}^{\infty} + 4x e^{-x/2} \right|_{x=0}^{\infty} + 8 \int_{0}^{\infty} \, dx \right) = \frac{1}{4} (16) = 4
\]

6b. We compute
\[1 = \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{-1} 0 \, dx + \int_{-1}^{1} c(1-x^2) \, dx + \int_{1}^{\infty} 0 \, dx = c \left(x - \frac{x^3}{3} \right) \bigg|_{x=-1}^{1} = c(4/3) \]
and thus \(c = 3/4 \). Now we compute
\[E[X] = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{-\infty}^{-1} (x) (0) \, dx + \int_{-1}^{1} \left(\frac{3}{4} - x^2 \right) \, dx + \int_{1}^{\infty} (x)(0) \, dx \]
\[= \left(\frac{3}{4} \right) \left(x^2 - \frac{x^4}{4} \right) \bigg|_{x=-1}^{1} \]
\[= \left(\frac{3}{4} \right) \left(\frac{1}{4} - \frac{1}{4} \right) = 0 \]

6c. We compute
\[E[X] = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{-\infty}^{5} (x)(0) \, dx + \int_{5}^{\infty} \frac{5}{x^2} \, dx = 5 \ln x \bigg|_{x=5}^{\infty} = +\infty \]

10a. The times in which the passenger would go to destination \(A \) are 7:05–7:15, 7:20–7:30, 7:35–7:45, 7:50–8:00, i.e., a total of 40 out of 60 minutes. So 2/3 of the time, the passenger goes to destination \(A \).

10b. The times in which the passenger would go to destination \(A \) are 7:10–7:15, 7:20–7:30, 7:35–7:45, 7:50–8:00, 8:05–8:10, i.e., a total of 40 out of 60 minutes. So 2/3 of the time, the passenger goes to destination \(A \).

11. To interpret this statement, we say that the location of the point is \(X \) inches from the left-hand-edge of the line, with \(0 \leq X \leq L \). Since the point is chosen at random on the line, with no further clarification, it is fair to assume that the distribution is uniform, i.e., \(X \) has density function \(f(x) = \frac{1}{L} \) for \(0 \leq x \leq L \), and \(f(x) = 0 \) otherwise.
The ratio of the shorter to the longer segment is less than $1/4$ if $X \leq \frac{1}{5}L$ or $X \geq \frac{4}{5}L$. So the ratio of the shorter to the longer segment is less than $1/4$ with probability

$$
\int_0^{\frac{1}{5}L} \frac{1}{L} \, dx + \int_{\frac{4}{5}L}^L \frac{1}{L} \, dx = 1/5 + 1/5 = 2/5
$$

14. Using proposition 2.1, we compute

$$
E[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) \, dx = \int_{-\infty}^0 (x^n)(0) \, dx + \int_0^1 (x^n)(1) \, dx + \int_1^{\infty} (x^n)(0) \, dx = \int_0^1 x^n \, dx
$$

To use the definition of expectation, we need to find the density of the random variable $Y = X^n$. We first find the cumulative distribution function of Y. We know that $P(Y \leq a) = 0$ for $a \leq 0$, and $P(Y \leq a) = 1$ for $a \geq 1$. For $0 < a < 1$, we have $P(Y \leq a) = P(X^n \leq a) = P(X \leq \sqrt[n]{a}) = \int_0^{\sqrt[n]{a}} 1 \, dx = \sqrt[n]{a}$. Therefore, the cumulative distribution function of Y is

$$
F_Y(a) = \begin{cases}
\sqrt[n]{a} & \text{if } 0 < a < 1 \\
0 & \text{otherwise}
\end{cases}
$$

So the density of Y is

$$
f_Y(x) = \begin{cases}
\frac{1}{n} a^{\frac{1}{n} - 1} & \text{if } 0 < x < 1 \\
0 & \text{otherwise}
\end{cases}
$$

So the expected value of Y is

$$
E[Y] = \int_{-\infty}^{\infty} x f_Y(x) \, dx = \int_{-\infty}^0 (x)(0) \, dx + \int_0^1 (x) \frac{1}{n} x^{\frac{1}{n} - 1} \, dx + \int_1^{\infty} (x)(0) \, dx = \int_0^1 \frac{1}{n} x^{1/n} \, dx
$$

$$
= \left[\frac{x^{\frac{1}{n} + 1}}{\frac{1}{n} + 1} \right]_{x=0}^{1} = \frac{1}{n + 1}
$$

15a. We compute

$$
P(X > 5) = P\left(\frac{X - 10}{6} > \frac{5 - 10}{6} \right) = P(Z > -5/6) = P(Z < 5/6) \approx \Phi(.83) \approx .7967
$$

15b. We compute

$$
P(4 < X < 16) = P\left(\frac{4 - 10}{6} < \frac{X - 10}{6} < \frac{16 - 10}{6} \right) = P(-1 < Z < 1) = P(Z < 1) - P(Z < -1) = \Phi(1) - (1 - \Phi(1)) \approx .6826
$$

15c. We compute

$$
P(X < 8) = P\left(\frac{X - 10}{6} < \frac{8 - 10}{6} \right) = P(Z < -1/3) = 1 - P(Z < 1/3) \approx 1 - \Phi(.33) \approx .3707
$$

15d. We compute

$$
P(X < 20) = P\left(\frac{X - 20}{6} < \frac{20 - 10}{6} \right) = P(Z < 5/3) \approx \Phi(1.67) \approx .9525
$$
15e. We compute

\[P(X > 16) = P \left(\frac{X - 20}{6} > \frac{16 - 10}{6} \right) = P(Z > 1) = 1 - P(Z < 1) = 1 - \Phi(1) \approx .1587 \]

16. Let \(X \) denote the rainfall in a given year. Then \(X \) has a uniform \((\mu = 40, \sigma = 4)\) distribution, so \(P(X \leq 50) = P \left(\frac{X - 40}{4} \leq \frac{50 - 40}{4} \right) = P(Z \leq 2.5) = \Phi(2.5) \approx .9938 \), where \(Z \) has a standard normal distribution. If the rainfall in each year is independent of all other years, then it follows that the desired probability is \((P(X \leq 50))^{10} \approx (.9938)^{10} \approx .9397\).

19. We compute

\[.10 = P(X > c) = P \left(\frac{X - 12}{2} > \frac{c - 12}{2} \right) = P \left(Z > \frac{c - 12}{2} \right) = 1 - \Phi \left(\frac{c - 12}{2} \right) \]

Thus \(\Phi \left(\frac{c - 12}{2} \right) = .90 \). So \(\frac{c - 12}{2} \approx 1.28 \). So \(c \approx 14.56 \).

20a. We have \(n = 100 \) people, each of which is in favor of a proposed rise in school taxes with probability \(p = .65 \). The number of the 100 people who are in favor of the rise in taxes is a Binomial \((n = 100, p = .65)\) random variable, which is well-approximated by a normal random variable \(X \) with mean \(np = 65 \) and variance \(np(1 - p) = 22.75 \). So the probability that at least 50 are in favor of the proposition is approximately

\[P(X > 49.5) = P \left(\frac{X - 65}{\sqrt{22.75}} > \frac{49.5 - 65}{\sqrt{22.75}} \right) \approx P(Z > -3.25) = \Phi(3.25) \approx .9994 \]

20b. The desired probability is approximately

\[P(59.5 < X < 70.5) = P \left(\frac{59.5 - 65}{\sqrt{22.75}} < \frac{X - 65}{\sqrt{22.75}} < \frac{70.5 - 65}{\sqrt{22.75}} \right) \approx P(-1.15 < Z < 1.15) \]

\[= P(Z < 1.15) - P(Z < -1.15) = \Phi(1.15) - (1 - \Phi(1.15)) \approx .7498 \]

20c. The desired probability is approximately

\[P(X < 74.5) = P \left(\frac{X - 65}{\sqrt{22.75}} < \frac{74.5 - 65}{\sqrt{22.75}} \right) \approx P(Z < 1.99) = P(Z < 1.99) \approx .9767 \]

23. Let \(X \) denote the number of times “6” shows during 1000 independent rolls of a fair die. Then \(X \) is a Binomial random variable with \(n = 1000 \) and \(p = 1/6 \). So \(X \) is approximately normal with mean \(np = 1000/6 \) and variance \(np(1 - p) = 1000(1/6)(5/6) \). Thus

\[P(150 \leq X \leq 200) = P(149.5 \leq X \leq 200.5) \]

\[= P \left(\frac{149.5 - (1000/6)}{\sqrt{1000(1/6)(5/6)}} \leq \frac{X - (1000/6)}{\sqrt{1000(1/6)(5/6)}} \leq \frac{200.5 - (1000/6)}{\sqrt{1000(1/6)(5/6)}} \right) \]

\[\approx P(-1.46 \leq Z \leq 2.87) = P(Z \leq 2.87) - P(Z \leq -1.46) \]

\[= P(Z \leq 2.87) - P(Z \geq 1.46) = P(Z \leq 2.87) - (1 - P(Z \leq 1.46)) \]

\[= \Phi(2.87) - (1 - \Phi(1.46)) \approx .9979 - (1 - .9279) = .9258 \]

Given that “6” shows exactly 200 times, then the remaining 800 rolls are all independent, with possible outcomes 1, 2, 3, 4, 5, each appearing with probability 1/5 on each die. Let
Y denote the number of times “5” shows during the 800 rolls. Then Y is a Binomial random variable with \(n = 800 \) and \(p = 1/5 \). So Y is approximately normal with mean \(np = 800/5 = 160 \) and variance \(np(1 - p) = 800(1/5)(4/5) = 128 \). Thus

\[
P(Y < 150) = P(Y \leq 149.5) = P \left(\frac{Y - 160}{\sqrt{128}} \leq \frac{149.5 - 160}{\sqrt{128}} \right)
\]

\[
\approx P(Z \leq -0.93) = P(Z \geq 0.93) = 1 - P(Z \leq 0.93) = 1 - \Phi(0.93) \approx 1 - 0.8238 = 0.1762
\]

25. Let \(X \) denote the number of acceptable items. Then \(X \) is a Binomial random variable with \(n = 150 \) and \(p = .95 \). So \(X \) is approximately normal with mean \(np = (150)(.95) = 142.5 \) and variance \(np(1 - p) = (150)(.95)(.05) = 7.125 \). Thus

\[
P(150 - X \leq 10) = P(140 \leq X) = P(139.5 \leq X) = P \left(\frac{139.5 - 142.5}{\sqrt{7.125}} \leq \frac{X - 142.5}{\sqrt{7.125}} \right)
\]

\[
\approx P(-1.12 \leq Z) = P(Z \leq 1.12) = \Phi(1.12) = .8686
\]

26. With a fair coin, let \(X \) denote the number of heads. Then \(X \) is a Binomial random variable with \(n = 1000 \) and \(p = 1/2 \). So \(X \) is approximately normal with mean \(np = 500 \) and variance \(np(1 - p) = 250 \). Thus the probability we reach a false conclusion is

\[
P(525 \leq X) = P(524.5 \leq X) = P \left(\frac{524.5 - 500}{\sqrt{250}} \leq \frac{X - 500}{\sqrt{250}} \right) \approx P(1.55 \leq Z)
\]

\[
= 1 - P(Z \leq 1.55) = 1 - \Phi(1.55) \approx 1 - .9394 = .0506
\]

With a biased coin, let \(Y \) denote the number of heads. Then \(Y \) is a Binomial random variable with \(n = 1000 \) and \(p = .55 \). So \(Y \) is approximately normal with mean \(np = 550 \) and variance \(np(1 - p) = 247.5 \). Thus the probability we reach a false conclusion is

\[
P(Y < 525) = P(Y < 524.5) = P \left(\frac{Y - 550}{\sqrt{247.5}} \leq \frac{524.5 - 550}{\sqrt{247.5}} \right) \approx P(Z \leq -1.62)
\]

\[
= P(Z \geq 1.62) = 1 - P(Z \leq 1.62) = 1 - \Phi(1.62) \approx 1 - .9474 = .0526
\]

28. We assume that each person is left-handed, independent of all the other people. Let \(X \) denote the number of the 200 people who are lefthanded. Then \(X \) is a Binomial random variable with \(n = 200 \) and \(p = .12 \). So \(X \) is approximately normal with mean \(np = 200(.12) = 24 \) and variance \(np(1 - p) = 200(.12)(.88) = 21.12 \). Thus the probability that at least 20 of the 200 are lefthanded is

\[
P(20 \leq X) = P(19.5 \leq X) = P \left(\frac{19.5 - 24}{\sqrt{21.12}} \leq \frac{X - 24}{\sqrt{21.12}} \right) \approx P(-.98 < Z)
\]

\[
= P(Z < .98) = \Phi(.98) \approx .8365
\]

32a. Let \(X \) denote the time (in hours) needed to repair a machine. Then \(X \) is exponentially distributed with \(\lambda = 1/2 \). Then \(P(X > 2) = \int_{2}^{\infty} \frac{1}{2} e^{-(1/2)x} \, dx = e^{-1} \approx .368 \).

32b. The conditional probability is

\[
P(X > 10 \mid X > 9) = \frac{P(X > 10 \& X > 9)}{P(X > 9)} = \frac{P(X > 10)}{P(X > 9)} = \frac{\int_{10}^{\infty} \frac{1}{2} e^{-(1/2)x} \, dx}{e^{-9/2}} = e^{-5} = e^{-1/2}
\]

We could also have simply computed the line above by writing

\[
\frac{P(X > 10)}{P(X > 9)} = \frac{1 - P(X \leq 10)}{1 - P(X \leq 9)} = \frac{1 - F(10)}{1 - F(9)} = \frac{1 - (1 - e^{-(1/2)10})}{1 - (1 - e^{-(1/2)9})} = e^{-5} = e^{-1/2}
\]
An alternative method is to simply compute that probability that the waiting time would be at least one additional hour, which is

\[P(X > 1) = \int_1^\infty \frac{1}{2} e^{-(1/2)x} \, dx = e^{-1/2} \] (or equivalently,

\[P(X > 1) = 1 - P(X \leq 1) = 1 - (1 - e^{-(1/2)^1}) = e^{-1/2} \). Either way, the answer is \(e^{-1/2} \approx .6065 \).

33. Let \(X \) denote the time in years that the radio continues to function for Jones. The desired probability is

\[P(X > 8) = \int_8^\infty \frac{1}{8} e^{-(1/8)x} \, dx = \left. \frac{1}{8} e^{-(1/8)x} \right|_8^\infty = e^{-1} \approx .368 \]

We could also have written \(P(X > 8) = 1 - P(X \leq 8) = 1 - (1 - e^{-(1/8)^8}) = e^{-1} \approx .368 \).

37a. We compute \(P(|X| > 1/2) = P(X > 1/2 \text{ or } X < -1/2) = P(X > 1/2) + P(X < -1/2) = \frac{1}{2} + \frac{1}{2} = 1/2 \).

37b. We first compute the cumulative distribution function of \(Y = |X| \). For \(a \leq 0 \), we have \(P(Y \leq a) = 0 \), since \(|X|\) is never less than \(a \) in this case. For \(a \geq 1 \), we have \(P(Y \leq a) = 1 \), since \(|X|\) is always less than \(a \) in this case. For \(0 < a < 1 \), we compute

\[P(Y \leq a) = P(|X| \leq a) = P(-a \leq X \leq a) = \frac{2a}{2} = a \]

or equivalently, \(P(Y \leq x) = x \) for \(0 < x < 1 \). In summary, the cumulative distribution function of \(Y = |X| \) is

\[F_Y(x) = \begin{cases}
0 & x \leq 0 \\
1 & 0 < x < 1 \\
1 & x \geq 1
\end{cases} \]

Differentiating throughout with respect to \(x \) yields the density of \(Y = |X| \) is

\[f_Y(x) = \begin{cases}
1 & 0 < x < 1 \\
0 & \text{otherwise}
\end{cases} \]

Intuitively, if \(X \) is uniformly distributed on \((-1, 1)\), then \(Y = |X| \) is uniformly distribution on \([0, 1)\).

39. Since \(X \) is exponentially distributed with \(\lambda = 1 \), then \(X \) has density \(f_X(x) = \begin{cases} e^{-x} & x \geq 0 \\
0 & \text{otherwise} \end{cases} \) and cumulative distribution function

\[F_X(x) = \begin{cases} 1 - e^{-x} & x \geq 0 \\
0 & \text{otherwise} \end{cases} \]

Next, we compute the cumulative distribution function of \(Y = \log X \). We have

\[P(Y \leq a) = P(\log X \leq a) = P(X \leq e^a) = F_X(e^a) = 1 - e^{-e^a} \]

or equivalently, \(P(Y \leq x) = 1 - e^{-e^x} \). Differentiating throughout with respect to \(x \) yields the density of \(Y = \log X \) is

\[f_Y(x) = e^x e^{-e^x} \]
40. Since X is uniformly distributed on $(0, 1)$, then X has density

$$f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

and cumulative distribution function

$$F_X(x) = \begin{cases} 0 & x \leq 0 \\ x & 0 < x < 1 \\ 1 & x \geq 1 \end{cases}$$

Next, we compute the cumulative distribution function of $Y = e^X$. For $a \leq 1$, we have $P(Y \leq a) = 0$, since $Y = e^X$ is never less than a in this case (i.e., X is never less than 0 in this case). For $a \geq e$, we have $P(Y \leq a) = 1$, since $Y = e^X$ is always less than a in this case (i.e., X is always less than 0 in this case). For $1 < a < e$ (and thus $0 < \ln a < 1$), we compute

$$P(Y \leq a) = P(e^X \leq a) = P(X \leq \ln a) = F_X(\ln a) = \ln a$$

or equivalently, $P(Y \leq x) = \ln x$ for $1 < x < e$. In summary, the cumulative distribution function of $Y = e^X$ is

$$F_Y(x) = \begin{cases} 0 & x \leq 1 \\ \ln x & 1 < x < e \\ 1 & x \geq e \end{cases}$$

Differentiating throughout with respect to x yields the density of $Y = e^X$ is

$$f_Y(x) = \begin{cases} \frac{1}{x} & 1 < x < e \\ 0 & \text{otherwise} \end{cases}$$

THEORETICAL EXERCISES

2. We observe that

$$E[Y] = \int_{-\infty}^{\infty} x f_Y(x) \, dx = \int_{-\infty}^{0} x f_Y(x) \, dx + \int_{0}^{\infty} x f_Y(x) \, dx$$

The second integral can be simplified by observing that $x = \int_{0}^{x} 1 \, dy$, so

$$\int_{0}^{\infty} x f_Y(x) \, dx = \int_{0}^{\infty} \int_{0}^{x} f_Y(x) \, dy \, dx = \int_{0}^{\infty} \int_{y}^{\infty} f_Y(x) \, dx \, dy = \int_{0}^{\infty} P(Y > y) \, dy$$

where the second equality in the line above follows by interchanging the order of integration over all x and y with $0 \leq y \leq x$.

Similarly, $x = \int_{-\infty}^{0} 1 \, dy = \int_{-\infty}^{0} -1 \, dy$, so

$$\int_{-\infty}^{0} x f_Y(x) \, dx = -\int_{-\infty}^{0} \int_{0}^{-x} f_Y(x) \, dy \, dx = -\int_{0}^{\infty} \int_{-\infty}^{-y} f_Y(x) \, dx \, dy = -\int_{0}^{\infty} P(Y < -y) \, dy$$

where the second equality in the line above follows by interchanging the order of integration over all x and y with $0 \leq y \leq -x$ or equivalently $x \leq -y \leq 0$.
Altogether, this yields
\[E[Y] = \int_0^\infty P(Y > y) \, dy - \int_0^\infty P(Y < -y) \, dy \]
as desired.

6. Let \(X \) be uniform on the interval \((0, 1)\). For each \(a \) in the range \(0 < a < 1 \), define \(E_a = P(X \neq a) \). So \(P(E_a) = 1 \) for each \(a \). Also, \(\bigcap_{0 < a < 1} E_a = \emptyset \), so \(P\left(\bigcap_{0 < a < 1} E_a \right) = P(\emptyset) = 0 \).

8. We see that
\[E[X^2] = \int_0^c x^2 f(x) \, dx \leq \int_0^c c x f(x) \, dx = c E[X] \]
Thus
\[\text{Var}(X) = E[X^2] - (E[X])^2 \leq cE[X] - (E[X])^2 = E[X](c - E[X]) = c^2 \frac{E[X]}{c} \left(1 - \frac{E[X]}{c} \right) \]
or equivalently, writing \(\alpha = \frac{E[X]}{c} \), we have
\[\text{Var}(X) = c^2 \alpha (1 - \alpha) \]
We notice that \(0 \leq E[X] = \int_0^c x f(x) \, dx \leq \int_0^c c f(x) \, dx = c \), so \(0 \leq E[X] \leq c \), so \(0 \leq \frac{E[X]}{c} \leq 1 \), or equivalently, \(0 \leq \alpha \leq 1 \).

The largest value that \(\alpha (1 - \alpha) \) can achieve for \(0 \leq \alpha \leq 1 \) is \(1/4 \), which happens when \(\alpha = 1/2 \) (to see this, just differentiate \(\alpha (1 - \alpha) \) with respect to \(\alpha \), set the result equal to 0, and solve for \(\alpha \), which yields \(\alpha = 1/2 \); don’t forget to also check the endpoints, namely \(\alpha = 0 \) and \(\alpha = 1 \)).

Since \(\text{Var}(X) \leq c^2 \alpha (1 - \alpha) \) and \(\alpha (1 - \alpha) \leq 1/4 \), it follows that \(\text{Var}(X) \leq c^2/4 \), as desired.

12a. If \(X \) is uniform on the interval \((a, b)\), then the median is \((a + b)/2\). To see this, write \(m \) for the median, and solve \(1/2 = F(m) = \int_a^m \frac{1}{b-a} \, dx = \frac{m-a}{b-a} \) which immediately yields \(m = \frac{(a+b)}{2} \).

12b. If \(X \) is normal with mean \(\mu \) and variance \(\sigma^2 \), then the median is \(\mu \). To see this, write \(m \) for the median, and solve \(1/2 = F(m) = P(X \leq m) = P\left(\frac{X-\mu}{\sigma} \leq \frac{m-\mu}{\sigma} \right) \) = \(\Phi\left(\frac{m-\mu}{\sigma} \right) \) where \(Z \) is standard normal, and thus \(\frac{m-\mu}{\sigma} = 0 \), so \(m = \mu \).

12c. If \(X \) is exponential with parameter \(\lambda \), then the median is \(\frac{\ln 2}{\lambda} \). To see this, write \(m \) for the median, and solve \(1/2 = F(m) = 1 - e^{-\lambda m} \), so \(e^{-\lambda m} = 1/2 \), so \(-\lambda m = \ln(1/2) \), so \(\lambda m = \ln 2 \), and thus \(m = \frac{\ln 2}{\lambda} \).

13a. If \(X \) is uniform on the interval \((a, b)\), then any value of \(m \) between \(a \) and \(b \) is equally valid to be used as the mode, since the density is constant on the interval \((a, b)\).

13b. If \(X \) is normal with mean \(\mu \) and variance \(\sigma^2 \), then the mode is \(\mu \). To see this, write \(m \) for the mode, and solve \(0 = \frac{d}{dx} \frac{1}{\sqrt{2\pi} \sigma} e^{-(x-\mu)^2/(2\sigma^2)} \), i.e., \(0 = \left(\frac{1}{\sqrt{2\pi} \sigma} e^{-(x-\mu)^2/(2\sigma^2)} \right) \frac{d}{dx} \left(\frac{1}{2\sigma} (x-\mu) \right) \), so \(x = \mu \) is the location of the mode.
If X is exponential with parameter λ, then the mode is 0. To see this, note that

$$\frac{d}{dx} \lambda e^{-\lambda x} = \lambda e^{-\lambda x} - \lambda x e^{-\lambda x}$$

is the slope of the density for all $x > 0$, so the density is always decreasing for $x > 0$. So the mode must occur on the boundary of the positive portion of the density, i.e., at $x = 0$.

Consider an exponential random variable X with parameter λ. To show that $Y = cX$ is exponential with parameter λ/c, it suffices to show that Y has cumulative density function

$$F_Y(a) = \begin{cases} 1 - e^{-(\lambda/c)a} & a > 0 \\ 0 & \text{otherwise} \end{cases}$$

To see this, first we note that X is always nonnegative, so $Y = cX$ is always nonnegative, so $F_Y(a) = 0$ for $a \leq 0$.

For $a > 0$, we check

$$F_Y(a) = P(Y \leq a) = P(cX \leq a) = P(X \leq a/c) = 1 - e^{-\lambda(a/c)} = 1 - e^{-(\lambda/c)a}$$

as desired.

Thus, $Y = cX$ has the cumulative distribution function of an exponential random variable with parameter λ/c, so $Y = cX$ must indeed be exponential with parameter λ/c.

We prove that, for an exponential random variable X with parameter λ,

$$E[X^k] = \frac{k!}{\lambda^k}$$

for $k \geq 1$.

To see this, we use proof by induction on k.

For $k = 1$, we use integration by parts with $u = x$ and $dv = \lambda e^{-\lambda x} dx$, and thus $du = dx$ and $v = \frac{\lambda e^{-\lambda x}}{-\lambda}$, to see that

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} \, dx = \left(x \left(\frac{\lambda e^{-\lambda x}}{-\lambda} \right) \right) \bigg|_0^\infty - \int_0^\infty \frac{\lambda e^{-\lambda x}}{-\lambda} \, dx$$

or, more simply,

$$E[X] = -\frac{x}{e^{\lambda x}} \bigg|_0^\infty + \int_0^\infty e^{-\lambda x} \, dx$$

We see that the integral evaluates to $\left. \frac{e^{-\lambda x}}{-\lambda} \right|_0^\infty = \frac{1}{\lambda}$. We also see that, in the first part of the expression, plugging in $x = 0$ yields 0; using L'Hospital’s rule as $x \to \infty$ yields

$$\lim_{x \to \infty} \frac{x}{e^{\lambda x}} = \lim_{x \to \infty} \frac{1}{\lambda e^{\lambda x}} = 0$$

So we conclude that

$$E[X] = \frac{1}{\lambda}$$

This completes the base case, i.e., the case $k = 1$.

Now we do the inductive step of the proof. For $k \geq 2$, we assume that $E[X^{k-1}] = \frac{(k-1)!}{\lambda^{k-1}}$ has already been proved, and we prove that $E[X^k] = \frac{k!}{\lambda^k}$.
To do this, we use integration by parts with \(u = x^k \) and \(dv = \lambda e^{-\lambda x} \, dx \), and thus \(du = kx^{k-1} \, dx \) and \(v = \frac{\lambda e^{-\lambda x}}{-\lambda} \), to see that

\[
E[X^k] = \int_0^\infty x^k \lambda e^{-\lambda x} \, dx = (x^k) \left(\frac{\lambda e^{-\lambda x}}{-\lambda} \right) \bigg|_{x=0}^\infty - \int_0^\infty (kx^{k-1}) \left(\frac{\lambda e^{-\lambda x}}{-\lambda} \right) \, dx
\]

or, more simply,

\[
E[X^k] = -\frac{x^k}{e^{\lambda x}} \bigg|_{x=0}^\infty + \frac{k}{\lambda} \int_0^\infty x^{k-1} \lambda e^{-\lambda x} \, dx
\]

We see that the integral is \(\frac{k}{\lambda} E[X^{k-1}] \), which is (by the inductive assumption) equal to \(\frac{k}{\lambda} \frac{(k-1)!}{\lambda^{k-1}} = \frac{k!}{\lambda^k} \). We also see that, in the first part of the expression, plugging in \(x = 0 \) yields 0; using L'Hospital's rule \(k \times \) times as \(x \to \infty \) yields

\[
\lim_{x \to \infty} \frac{x^k}{e^{\lambda x}} = \lim_{x \to \infty} \frac{kx^{k-1}}{\lambda e^{\lambda x}} = \lim_{x \to \infty} \frac{k(k - 1)x^{k-2}}{\lambda^2 e^{\lambda x}} = \cdots = \lim_{x \to \infty} \frac{k!}{\lambda^k e^{\lambda x}} = 0
\]

So we conclude that

\[
E[X^k] = \frac{k!}{\lambda^k}
\]

This completes the inductive case, which completes the proof by induction.