1. Let X_1, X_2, X_3 be independent exponential waiting times, each with an average of 30 minutes. Let $Y = X_1 + X_2 + X_3$.

a. What is the average (in minutes) of Y?

b. What is the standard deviation (in minutes) of Y?
2. A chef working in a kitchen believes that the waiting time until the next dessert order is exponential, with an average of 3 minutes. The times between dessert orders are assumed to be independent exponentials, also with 3 minutes on average. Let \(Y \) be the time until the next dessert order, and let \(Z \) be the subsequent time (afterwards) until the following dessert order.

[E.g., if it is 12 noon right now, and the next order arrives at 12:04 PM, and the order after that arrives at 12:11 PM, then \(Y = 4 \) and \(Z = 7 \).]

Let \(X = Y + Z \). Find the density of \(X \).
3. Suppose that the times until Hector, Ivan, and Jacob’s pizzas arrive are independent exponential random variables, each with average of 20 minutes. Let X be the sum of the times that they spend waiting, i.e., Hector’s time plus Ivan’s time plus Jacob’s time. Find the variance of X.
4. [Question about Exponential random variables.]

Let X be exponential with expected value 3. Let Y be another random variable that depends on X as follows: if $X > 5$, then $Y = X - 5$; otherwise, $Y = 0$.

a. Find the expected value of Y.

b. Find the variance of Y.
5. [Question about Exponential random variables.]

Suppose that Michelle, Nancy, and Olivia each are waiting for their husbands to appear. Their waiting times are assumed to be independent exponentials, and they each expect to wait 5 minutes. Let X denote the time until the very first husband appears.

What is the expected value of X? [Hint: Since X is the minimum of three independent exponential random variables, then X is exponential.]
6. **Design your own problem and solution.** Create your own problem about a Gamma random variable. Design your problem in such a way that you would find it enjoyable and also interesting (i.e., not completely trivial) if you found this problem in a probability book. Please provide the answer for your problem too.