Chapter 10 Answers

1. Ten students sign up for a job opening, but only 1 of the students will be selected. The employer chooses randomly; all ten outcomes are equally likely. If person 3, 5, 7, or 9 gets the job, let \(X = 1 \); otherwise, \(X = 0 \). If person 1, 2, 3, 4, or 5 gets the job, let \(Y = 1 \); otherwise, \(Y = 0 \). Are \(X \) and \(Y \) independent random variables? Justify your answer.

Yes, \(X \) and \(Y \) are independent random variables. The sample space is \(\{1, 2, \ldots, 10\} \). The random variable \(X \) is an indicator for the event \(\{3, 5, 7, 9\} \), which we shall call event \(A \); the random variable \(Y \) is an indicator for the event \(\{1, 2, 3, 4, 5\} \), which we shall call event \(B \). So it is enough to prove that events \(A \) and \(B \) are independent. We see that \(P(A) = \frac{4}{10} = \frac{2}{5} \) and \(P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\{3, 5\})}{P(\{1, 2, 3, 4, 5\})} = \frac{2/10}{5/10} = \frac{2}{5} \). Thus \(P(A \mid B) = P(A) \). So \(A \) and \(B \) are independent events. So \(X \) and \(Y \) are independent random variables.

2. Each day, Maude has a 1% chance of losing her cell phone (her behavior on different days is independent). Each day, Maude has a 3% chance of forgetting to eat breakfast (again, her behavior on different days is independent). Her breakfast and cell phone habits are independent.

Let \(X \) be the number of days until she first loses her cell phone. Let \(Y \) be the number of days until she first forgets to eat breakfast. (Here, \(X \) and \(Y \) are independent.) Find the joint mass of \(X \) and \(Y \).

The joint mass of \(X \) and \(Y \) is

\[
p_{X,Y}(x, y) = (0.99)^{x-1}(0.01)(0.97)^{y-1}(0.03),
\]

for all pairs of positive integers \(x \) and \(y \), and \(p_{X,Y}(x, y) = 0 \) otherwise.
3. A student flips a fair coin until heads appears. Let \(X \) be the numbers of flips until (and including) this first head. Afterwards, he begins flipping again until he gets another head. Let \(Y \) be the number of flips, after the first head, up to (and including) the second head. E.g., if the sequence of flips is TTTTTTHTTH then \(X = 7 \) and \(Y = 3 \).

Are \(X \) and \(Y \) independent? Justify your answer.

Yes, \(X \) and \(Y \) are independent random variables. Here is a simple argument to show that, using the fact that \(X \) and \(Y \) are independent if the joint mass of \(X \) and \(Y \) equals the product of the mass of \(X \) times the mass of \(Y \).

For any event consisting of just one outcome, namely, a sequence of \(x-1 \) tails, and then a head, and then \(y-1 \) tails, and then a head, the probability of such an event is \((1/2)^{x-1}(1/2)^{y-1}(1/2)\). Thus the joint mass of \(X \) and \(Y \) is
\[
p_{X,Y}(x,y) = (1/2)^{x-1}(1/2)^{y-1}(1/2),
\]
for all positive integers \(x \) and \(y \); and \(p_{X,Y}(x,y) = 0 \) otherwise. The mass of \(X \) is
\[
p_X(x) = (1/2)^{x-1}(1/2),
\]
for all positive integers \(x \); and \(p_X(x) = 0 \) otherwise. The mass of \(Y \) is
\[
p_Y(y) = (1/2)^{y-1}(1/2),
\]
for all positive integers \(y \); and \(p_Y(y) = 0 \) otherwise. So, indeed, the joint mass of \(X \) and \(Y \) is the product of the masses of \(X \) and \(Y \), i.e.,
\[
p_{X,Y}(x,y) = p_X(x)p_Y(y),
\]
for all \(x \) and \(y \). Thus \(X \) and \(Y \) are independent.

4. Same scenario as problem 3. Let \(Z \) be the total number of flips until (and including) the second head. So \(Z = X + Y \); e.g., in the example given, \(Z = 10 \). Are \(X \) and \(Z \) independent? Justify your answer.

No, \(X \) and \(Z \) are not independent random variables. Any little example can be used to show this.

For instance, \(P(X = 10) > 0 \), (indeed, \(P(X = 10) = (1/2)^9(1/2) = 1/1024 \), but this exact value is not even needed...we will only need the fact that \(P(X = 10) \) is positive—not zero—for this little argument). On the other hand, \(P(X = 10 \mid Z = 3) = 0 \), because it is impossible to take 10 flips to reach the first head, if we are given that it only takes 3 flips to reach the second head. Thus \(p_X(10) \neq p_{X \mid Z}(10 \mid 3) \). So the mass of \(X \) is not equal to the conditional mass of \(X \) given \(Z \). Thus \(X \) and \(Z \) are dependent random variables.