Bayesian Methods for High-Dimensional Variable Selection

Faming Liang

University of Florida
Overview

- MCMC, SAMC, and Parallel MCMC
- Bayesian variable selection for high-dimensional GLMs
- Bayesian variable selection for high-dimensional nonlinear systems
- Revisit of Computational Strategies: split-and-merge
Bayesian variable selection for high-dimensional nonlinear systems
High Dimensional Variable Selection: Linear System

During the past decade, substantial progresses have been obtained for linear systems for which the regression function can be described by a generalized linear model.

Frequentist methods: usually regularization-based

- LASSO (Tibshirani, 1996)
- elastic net (Zou and Hastie, 2005)
- SCAD (Fan and Li, 2001)
- MCP (Zhang, 2010)
- rLasso (Song and Liang, 2015)
High Dimensional Variable Selection: Linear System

Bayesian methods: Posterior Consistency or global convergence

- Bayesian subset modeling (Liang et al., 2013)
- Split-and-merge (Song and Liang, 2015)
- Non-local prior (Johnson and Rossel, 2012)
Dictionary Approach: It is to consider a dictionary of nonlinear features and then use a regularization method to select relevant elements of the dictionary by assuming that the true regression function of the nonlinear system can be approximated by a linear combination of nonlinear features included in the dictionary.

- Additive model (Ravikumar et al., 2009): Each nonlinear feature is expressed as a basis function of a single variable. It fails to model interactions between variables.
- Lin and Zhang (2006) encodes more complex interactions among the variables, e.g., the features defined by a second-degree polynomial kernel. The size of the dictionary grows more than exponentially as one considers high-order interactions.
Tree-based Approach: It makes use of the internals of the decision tree structure in variable selection. All observations begin in single root node and are split into two groups based on whether $X_k \geq c$ or $X_k < c$, where X_k is a chosen splitting variable and c is a chosen splitting point. The two groups form the left daughter node and the right daughter node, respectively. Then additional binary splits can be chosen for each of the two daughter nodes. Variable selection can be made based on the splitting variables.

- Random Forest
- Dynamic Tree
- Bayesian additive regression trees (BART)
High Dimensional Variable Selection: Non-Linear System

Our Approach: Bayesian feed-forward neural networks, which have properties:

- **Universal Approximation Ability**: a feedforward neural network is capable of approximating any continuous functions on compact subsets to any desired degree of accuracy.

- **Posterior Consistency**: The true density of the nonlinear system can be consistently estimated by the density of the models sampled from the posterior distribution of feed-forward neural networks.

- **Population Stochastic Approximation Monte Carlo (pop-SAMC)**: It is a parallel adaptive MCMC algorithm, and can be implemented on the OpenMP platform.

- **Variable selection**: It selects variables based on the frequency how often the variable appears in the neural networks simulated from the posterior distribution. In BNN, the nonlinearity of the system and the interaction effects between different variables are modeled by including a hidden layer.
Feed-forward neural networks

Figure: A fully connected one hidden layer MLP network with three input units \((x_1, x_2, x_3)\), one bias unit \((x_0)\), three hidden units \((H_1, H_2, H_3)\), and one output unit \((O)\). The arrows show the direction of data feeding.
Feed-forward neural networks

Let a_o denote the output of the network, and let $\psi_o(\cdot)$ denote the activation function of the output unit; that is,

$$a_o = \psi_o\left(\sum_{i=0}^{P} I_{sio} w_{io} x_i + \sum_{j=1}^{H} I_{sjo} w_{jo} a_j \right),$$

where w_{io} denotes the connection weight from input unit i to the output unit, w_{jo} denotes the connection weight from hidden unit j to the output unit, and $I_{s,o}$ is the corresponding indicator for the effectiveness of the connection.

We set $\psi_o(z)$ to be the identity function (i.e., $\psi_o(z) = z$) for normal regression problems, and set $\psi_o(z)$ to be the sigmoid function for binary classification problems.
Feed-forward neural networks

Let $\psi_h(\cdot)$ denote the activation function of the hidden unit, and let a_j denote the output of the hidden unit j; that is,

$$a_j = \psi_h\left(\sum_{i=0}^{P} I_{s_{ij}} w_{ij} x_i\right) \triangleq \psi_h(z_j), \quad (1)$$

where $I_{s_{ij}}$ is the indicator for whether the connection from input unit i to hidden unit j is included in the network; and, if included, w_{ij} denotes the connection weight from input unit i to hidden unit j.

We set $\psi_h(z)$ to be the hyperbolic tangent function, i.e., $\psi_h(z) = \tanh(z)$. An alternative choice of $\psi_h(z)$ is the sigmoid function $\psi_h(z) = 1/(1 + e^{-z})$.
Feed-forward neural networks

- For normal regression, we generally assume the response variable $y \sim N(\mu^*(\mathbf{x}), \sigma^2)$, where $\mathbf{x} = (x_0, x_1, \ldots, x_P)$, $\mu^*(\mathbf{x})$ is an unknown nonlinear function, and σ^2 denotes the variance of y.

- For binary classification, we generally assume that the response variable y is a Bernoulli random variable with the success probability $\psi_0(\mu^*(\mathbf{x}))$. In this case, a_0 works as an approximator of the success probability.

- Note that when $l_{sjo} = 0$ for all $j = 1, \ldots, H$, the neural network model is reduced to a linear regression or logistic regression, depending on the choice ψ_o.
Feed-forward neural networks

Remarks:

- Given the universal approximation ability of feed-forward neural networks, the problem of variable selection for nonlinear systems is reduced to selecting appropriate variables for $\mu(\beta, \mathbf{x})$ such that it can provide an adequate approximation to $\mu^*(\mathbf{x})$.

- Here, stemming from the universal approximation property, we have implicitly assumed that $\mu^*(\mathbf{x})$ can be well approximated by a parsimonious neural network model with relevant variables, and this parsimonious model is called the true model in the context of the paper.
BNN: Prior Setting

Let \(\gamma \) denote a BNN model, and let \(\beta_\gamma \) denote the corresponding connection weights.

- Conditional on \(\gamma \), \(\beta_\gamma \) follows \(N(0, V_\gamma) \), where \(V_\gamma \) is a \(|\gamma| \times |\gamma| \) covariance matrix, and \(|\gamma| \) is the number of nonzero elements of \(\gamma \).

- For any valid neural network,

\[
\pi(\gamma) \propto \lambda_n^{|\gamma|} (1 - \lambda_n)^{K_n - |\gamma|} I(3 \leq |\gamma| \leq \bar{r}_n, \gamma \in \mathcal{G}),
\]

(2)

where \(\bar{r}_n \) is the maximum network size allowed in the simulation, \(\lambda_n \) can be read as an approximate prior probability for each connection to be included in the network, and \(\mathcal{G} \) is the set of valid neural networks.

- In general, we set the hyperparameter \(\lambda_n \to 0 \) as \(K_n \to \infty \), which provides an automatic control for the multiplicity involved in variable selection.
BNN: Posterior Consistency

For BNN, we define the Hellinger distance

\[d(p, p^*)^2 = \int \int |p(y, x|\gamma, \beta_\gamma)^{1/2} - p^*(y, x)^{1/2}|^2 \nu_y(dy)\nu_x(dx). \]

Theorem 1. Under mild conditions, we have proved that

(i) For some \(c_1 > 0 \), and for all sufficiently large \(n \),

\[P^*\{\pi[d(p, p^*) > \epsilon_n|D^n] \geq e^{-0.5c_1n\epsilon_n^2}\} \leq e^{-0.5c_1n\epsilon_n^2}. \]

(ii) For some \(c_1 > 0 \), and for all sufficiently large \(n \),

\[E_{D^n}^\pi[d(p, p^*) > \epsilon_n|D^n] \leq e^{-c_1n\epsilon_n^2}. \]
BNN: Posterior Consistency

- The key to the proof of Theorem 1 is to bound the Hellinger distance by a function of γ and β_γ. Thanks to the mathematical tractability of the activation function $\text{tanh}(\cdot)$, which is bounded and has a bounded derivative function, the distance function has a simple analytic bound. Then the prior distribution can be elicited to have an asymptotic focus on a neighborhood of the true model, which, as a consequence, leads to the posterior consistency.

- Since the sigmoid function has the same property as $\text{tanh}(\cdot)$, i.e., being bounded and having a bounded derivative, Theorem 1 also holds for the networks with the sigmoid hidden unit activation function.
For a variable x_i, we define its marginal inclusion probability as

$$q_i = \sum_{\gamma} e_{i|\gamma} \pi(\gamma|D^n),$$

where $\pi(\gamma|D^n) = \int \pi(\gamma, \beta_\gamma|D^n) d\beta_\gamma$ is the marginal probability mass function of the model γ, and $e_{i|\gamma} = I(\sum_{j=1}^{H} I_{s_{ij}} I_{s_{jo}} + I_{s_{io}} > 0)$ is the indicator for whether x_i contributes to the output in the model γ.

The proposed approach is to choose the variables for which the marginal inclusion probability is greater than a threshold value \hat{q}; that is, setting $\hat{\gamma}_{\hat{q}} = \{x_j : q_j > \hat{q}, j = 1, 2, \ldots, P_n\}$ as an estimator of the set $\{x_i : e_{i|\gamma^*} = 1, i = 1, \ldots, P_n\}$.
Let $A_{\epsilon_n} = \{\gamma : d(\hat{f}(y|x, \gamma), f(y|x, \gamma_*)) \leq \epsilon_n\}$. Define

$$
\rho(\epsilon_n) = \sum_{\gamma \in A_{\epsilon_n}} \sum_{1 \leq k \leq K_n} |e_{c_k|\gamma*} - e_{c_k|\gamma}| \pi(\gamma|D^n),
$$

which measures the distance between the true model and sample models in the ϵ_n-neighborhood A_{ϵ_n}. Then the identifiability condition can be stated as follows:

$$
\rho(\epsilon_n) \to 0, \quad \text{as } n \to \infty \text{ and } \epsilon_n \to 0,
$$

(3)

that is, when n is sufficiently large, if a model has the same density function as the true model then the model must coincide with the true model.
BNN: Consistency of Variable Selection

Theorem 2: Under the identifiability condition,

(i) For any $\delta > 0$ and sufficiently large n,

\[
P \left(\max_{1 \leq i \leq P_n} |q_j - e_i|_{\gamma_*} \geq 2 \sqrt{\delta_n + e^{-0.5cn\epsilon_n^2}} \right) \leq P_n e^{-0.5cn\epsilon_n^2}.
\]

(ii) (Sure screening) For all sufficiently large n,

\[
P(\gamma_* \subset \hat{\gamma}\hat{q}) \geq 1 - |\gamma_*| e^{-0.5cn\epsilon_n^2},
\]

for some constant $c > 0$ and some $\hat{q} \in (0, 1)$, preferably one not close to 0 or 1.

(iii) (Consistency) For all sufficiently large n,

\[
P(\gamma_* = \hat{\gamma}_{0.5}) \geq 1 - K_n e^{-0.5cn\epsilon_n^2}.
\]
OpenMP is particularly suitable for a parallel implementation of the pop-SAMC algorithm.

- The **fork** step, which works on population sampling, costs the major portion of the CPU and the parallel execution provides a linear speedup for the simulation.

- The **join** step works on \(\theta \)-updating, where distribution of the updated \(\theta_t \) to different threads is avoided due to its shared memory mode. As shown in our examples, the pop-SAMC algorithm can execute very quickly on OpenMP.
Multiple Modes of BNN model

The posterior of BNN can have multiple modes:

(i) the output is invariant to relabeling of hidden units;

(ii) since the activation function $\tanh(\cdot)$ is used for the hidden units, the output is invariant to a simultaneous sign change of the weights on the connections from the input units to the hidden units and the weights on the connections from the hidden units to the output unit.

To resolve this issue, we impose the following constraint:

$$I_{s_1o} w_{1o} \geq I_{s_2o} w_{2o} \geq \cdots \geq I_{s_{Ho}} w_{Ho} \geq 0,$$

that is, all the weights on the effective connections from the hidden units to the output unit are restricted to be non-negative and non-increasing (arranged from the first hidden unit to the last one).
Examples

1. \[y = x_0 + 2 \tanh(x_1 + 2x_2) + 2x_3 + \sigma \epsilon, \]
2. \[y = \frac{10x_2}{1+x_1^2} + 5 \sin(x_3x_4) + 2x_5 + \epsilon, \]
3. \[y = \begin{cases} 1, & e^{x_1} + x_2^2 + 5 \sin(x_3x_4) - 3 > 0, \\ 0, & \text{otherwise}, \end{cases} \]

where \(\sigma = 0.5, x_0 = 1, \epsilon \sim N(0,1) \), and \(x_i \)'s for \(i = 1,\ldots,500 \) are generated via the equation

\[x_i = (e + z_i)/2, \quad i = 1,\ldots,P, \quad \text{(4)} \]

where \(e \) and \(z_i \) are independently generated from \(N(0,1) \); that is, all variables are highly correlated with a correlation coefficient of 0.5.
Example 1

Figure: Example 1: (a) Marginal inclusion probabilities of the connections with the marginal inclusion probability greater than 0.01; (b) marginal inclusion probabilities of the covariates with the marginal inclusion probability greater than 0.01; (c) scatter plot of Y and the fitted value \hat{Y} for training data; and (d) scatter plot of Y and the predicted value \hat{Y} for test data.
Examples 2

Figure: Example 2: (a) marginal inclusion probabilities of the connections with the marginal inclusion probability greater than 0.075; (b) marginal inclusion probabilities of the covariates with the marginal inclusion probability greater than 0.075; (c) scatter plot of Y and the fitted value \hat{Y} for training data; and (d) scatter plot of Y and the predicted value \hat{Y} for test data.
Examples 2

Figure: Median probability network produced by BNN for the simulated nonlinear regression example: the corresponding marginal inclusion probabilities are shown in Figure 3(a).
Example 2

Table: Comparison of BNN, GAM, random forest, and BART in variable selection and nonlinear prediction for Example 2: “MPM” denotes the median probability model marginal inclusion probability greater than 0.5; “MSFE” is for mean-squared fitting error, “MSPE” denotes the mean squared prediction error for the mean response. The results are averaged based on 10 datasets.

| Methods | Setting | $|s^*_j|$ | fsr | nsr | MSFE | MSPE |
|---------|---------|---------|-----|-----|--------|--------|
| BNN | FDR(0.05) | 5.3 (0.21) | 0.057 | 0 | 1.61 (0.15) | 2.05 (0.23) |
| | MPM | 5.4 (0.22) | 0.074 | 0 | | |
| GAM | 41.3 (6.77) | 0.898 | 0.16 | 3.78 (0.37) | 6.09 (0.29) |
| RF | 3.7 (0.30) | 0.49 | 0.62 | 1.60 (0.02) | 9.53 (0.26) |
| BART | 20 trees | 5.9 (2.87) | 0.64 | 0.58 | 2.79 (0.17) | 8.45 (0.34) |
| | 35 trees | 8.0 (4.34) | 0.75 | 0.60 | 1.54 (0.09) | 8.57 (0.42) |
| | 50 trees | 4.3 (2.53) | 0.56 | 0.62 | 0.82 (0.07) | 8.34 (0.38) |
Table: Effects of the number of hidden units on the performance of BNN.

| Methods | Setting | $|s_i^*|$ | fsr | nsr | MSFE | MSPE |
|-------------|---------|---------|-------|-------|-----------|-----------|
| BNN(H=3) | FDR(0.05) | 5.3 (0.21) | 0.057 | 0 | 1.61 (0.15) | 2.05 (0.23) |
| | MPM | 5.4 (0.22) | 0.074 | 0 | | |
| BNN(H=5) | FDR(0.05) | 5.5 (0.22) | 0.091 | 0 | 1.62 (0.14) | 2.05 (0.29) |
| | MPM | 5.3 (0.33) | 0.094 | 0.04 | | |
| BNN(H=7) | FDR(0.05) | 5.5 (0.17) | 0.091 | 0 | 1.48 (0.09) | 1.87 (0.18) |
| | MPM | 5.2 (0.29) | 0.077 | 0.04 | | |
Figure: Classification Example: (a) marginal inclusion probabilities of the connections with the marginal inclusion probability greater than 0.075; (b) marginal inclusion probabilities of the covariates with the marginal inclusion probability greater than 0.075; (c) fitted value of Y (open diamond for true $Y = 1$, filled square for true $Y = 0$); and (d) predicted value of Y (open diamond for true $Y = 1$, filled square for true $Y = 0$).
Table: Comparison of BNN, GAM, random forest, and BART in variable selection and class prediction for the simulated classification example.

| Methods | Setting | $|s_i^*|$ | fsr | nsr | Fitting(%) | Prediction(%) |
|---------|---------|---------|-----|-----|-----------|---------------|
| BNN | FDR(0.05) | 4.8 (0.55) | 0.188 | 0.025 | 4.53 (0.73) | 8.45 (0.73) |
| | MPM | 5.5 (0.67) | 0.291 | 0.025 | | |
| GAM | | 13.5 (3.68) | 0.73 | 0.10 | 12.13 (1.34) | 15.57 (1.97) |
| RF | 250 trees | 8.4 (1.73) | 0.70 | 0.375 | 27.1 (1.77) | 21.3 (2.10) |
| | 500 trees | 7.2 (1.16) | 0.56 | 0.20 | 24.6 (1.94) | 20.1 (1.72) |
| | 750 trees | 7.5 (2.66) | 0.57 | 0.20 | 22.3 (1.89) | 19.57 (2.10) |
| BART | 20 trees | 2.8 (0.33) | 0.0 | 0.30 | 9.90 (1.04) | 17.72 (1.83) |
| | 35 trees | 3.0 (0.26) | 0.0 | 0.25 | 6.83 (0.89) | 17.00 (1.34) |
| | 50 trees | 3.0 (0.30) | 0.0 | 0.25 | 5.33 (0.75) | 15.57 (1.42) |
| | 75 trees | 3.3 (0.33) | 0.03 | 0.20 | 4.47 (0.55) | 16.90 (1.58) |
The CCLE dataset consisted of 8-point dose-response curves for 24 chemical compounds across over 400 cell lines. For each cell line, it consisted of the expression data of 18,926 genes. Our goal is to identify the genes that respond to the chemical compounds, which is fundamental to elucidate the response mechanism of anticancer drugs and critical to precision medicine for selecting right drugs for right patients.
We used the area under the dose-response curve, which is termed as activity area to measure the sensitivity of drug to a given cell line.
Three Drugs

We gave a detailed analysis for three drugs, topotecan, 17-AAG and paclitaxel. The gene selection results for the other drugs are briefly reported later.

- Topotecan (trade name Hycamtin) is a chemotherapeutic agent that is a topoisomerase inhibitor. It has been used to treat ovarian cancer, lung cancer and other cancer types. The number of cell lines is \(n = 491 \).

- 17-AAG is a derivative of the antibiotic geldanamycin that is being studied in the treatment of cancer, specific young patients with certain types of leukemia or solid tumors, especially kidney tumors. The number of cell lines is \(n = 490 \).

- Paclitaxel is a drug used to treat ovarian, breast, lung, pancreatic and other cancers. The number of cell lines is \(n = 490 \).
Marginal Feature Screening

(a) Apply the nonparanormal transformation (Liu et al., 2009) to the data to get the transformed variables \tilde{Y} and $\tilde{X}_1, \ldots, \tilde{X}_P$.

(b) For each $k = 1, \ldots, P$, calculate the Henze-Zirkler test statistic

$$
\omega(\tilde{Y}, \tilde{X}_k) = \frac{n}{1 + 2\beta^2} + \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \exp \left(-\frac{\beta^2}{2} D_{ij} \right) \\
- \frac{2}{1 + \beta^2} \sum_{i=1}^{n} \exp \left(-\frac{\beta^2}{2(1 + \beta^2)} D_i \right),
$$

where $\beta = (1.25n)^{1/6}/\sqrt{2}$ is the smoothing parameter, $D_{ij} = (\tilde{x}_{ki} - \tilde{x}_{kj})^2 + (\tilde{y}_i - \tilde{y}_j)$, $D_i = \tilde{x}_{ki}^2 + \tilde{y}_i^2$, and \tilde{x}_{ki} and \tilde{y}_i denote the kth elements of \tilde{X}_k and \tilde{Y}, respectively.

(c) Select $p' = \lceil n / \log(n) \rceil$ genes with the largest value of $\omega(\cdot, \cdot)$ for further analysis.
Gene Selection

Table: The superscript * indicates the genes for which the interaction with the drug or the drug target gene has been reported in the PubMed Articles available at http://www.ncbi.nlm.nih.gov/pubmed/.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Target</th>
<th>Number</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-AAG</td>
<td>HSP90</td>
<td>5</td>
<td>NQO1*, ATP6V0E1, ZFP30, RPUSD4, MMP24</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>TUBB1</td>
<td>3</td>
<td>BCL2L1*, SSRP1, SPATA5L1</td>
</tr>
<tr>
<td>Topotecan</td>
<td>TOP2</td>
<td>3</td>
<td>SLFN11*, HSPB8, CD63</td>
</tr>
</tbody>
</table>
Gene Selection

Figure: Marginal inclusion probabilities of the network connections and the corresponding genes with the marginal inclusion probability greater than 0.075. The upper panel is for Topotecan, the selected genes are SLFN11 (bar 11), HSPB8 (bar 65) and CD63 (bar 13); The middle panel is for 17-AAG, the selected genes are NQO1 (bar 2), ATP6V0E1 (bar 16), ZFP30 (bar 26), RPUSD4 (bar 9) and MMP24 (bar 42); The lower panel is for paclitaxel, the selected genes are BCL2L1 (bar 43), SSRP1 (bar 11) and SPATA5L1 (bar 66).
Figure: Scatter plots of predicted values by BNN versus observed response values for three drugs: (a) Topotecan, (b) 17-AAG, and (c) Pacilitaxel.
Table: Comparison of BNN with GAM, RF, and BART in gene selection for the drug Topotecan, 17-AAG and Paclitaxel: “Fitting” denotes the mean squared fitting error, and #gene denotes the number of selected genes.

<table>
<thead>
<tr>
<th>Method</th>
<th>Topotecan</th>
<th>17-AAG</th>
<th>Paclitaxel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fitting</td>
<td>#gene</td>
<td>Fitting</td>
</tr>
<tr>
<td>GAM</td>
<td>0.77</td>
<td>32</td>
<td>0.54</td>
</tr>
<tr>
<td>RF</td>
<td>0.90</td>
<td>80</td>
<td>0.78</td>
</tr>
<tr>
<td>BART</td>
<td>0.47</td>
<td>8</td>
<td>0.34</td>
</tr>
<tr>
<td>BNN</td>
<td>0.78</td>
<td>3</td>
<td>0.67</td>
</tr>
</tbody>
</table>
Drug response genes selected by BNN for CCLE data

<table>
<thead>
<tr>
<th>Drug</th>
<th>Target</th>
<th>Number</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-AAG</td>
<td>HSP90</td>
<td>5</td>
<td>NQO1*, ATP6V0E1, ZFP30, RPUSD4, MMP24</td>
</tr>
<tr>
<td>AEW541</td>
<td>IGF1R</td>
<td>4</td>
<td>SLC44A1, UST*, TMEM229B, SP1*</td>
</tr>
<tr>
<td>AZD0530</td>
<td>ABL</td>
<td>2</td>
<td>APOO, SPINT2*</td>
</tr>
<tr>
<td>AZD6244</td>
<td>MEK</td>
<td>11</td>
<td>SPRY2*, PLEKHG4B, CSF1*, MYEOV, KIF1B, RNF125, CMTM7, LYZ, PDZD2, EML1, TMC6</td>
</tr>
<tr>
<td>Erlotinib</td>
<td>EGFR</td>
<td>11</td>
<td>GJB3, EVPL, MGC4294*, STX2, ARHGAP27, C1orf172, BSPRY, HSD17B8, FUT1, TUBB2A, PTPN6</td>
</tr>
<tr>
<td>Irinotecan</td>
<td>TOP2</td>
<td>3</td>
<td>SLFN11*, ARHGAP19, CPSF6</td>
</tr>
<tr>
<td>L-685458</td>
<td>GS</td>
<td>9</td>
<td>GHRLOS2*, CHERP, EIF4EBP2, RHOC*, RAB5C, RBBP5, DCAF12, DNAJB1, CTSL1*</td>
</tr>
<tr>
<td>Lapatinib</td>
<td>EGFR</td>
<td>3</td>
<td>GRB7*, PRSS16, EPHA1*</td>
</tr>
<tr>
<td>LBW242</td>
<td>XIAP</td>
<td>8</td>
<td>RIPK1*, SLC7A9, GORASP2, CCDC54, TMEM177, DCP2, RCOR3, KRTAP4-6</td>
</tr>
<tr>
<td>Nilotinib</td>
<td>ABL</td>
<td>11</td>
<td>FBXO46, CNOT7, C7orf29, KDM3B, C4orf29, PTPN14, RHOC, PLEC, FAM129B, AHNAK2, CD38*</td>
</tr>
<tr>
<td>Nutlin-3</td>
<td>MDM2</td>
<td>10</td>
<td>KDM5A, DDB2*, RBM15, CDS1*, RAB28, CCDC30, FEM1A, ATXN7, SIRT2*, OSTC</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>TUBB1</td>
<td>3</td>
<td>BCL2L1*, SSRP1, SPATA5L1</td>
</tr>
<tr>
<td>Panobinostat</td>
<td>HDAC</td>
<td>5</td>
<td>EIF4EBP2, MYOF, LARP6, TGFB2*, AXL*</td>
</tr>
</tbody>
</table>
Drug response genes selected by BNN for CCLE data

<table>
<thead>
<tr>
<th>Drug</th>
<th>Target</th>
<th>Number</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-0325901</td>
<td>MEK</td>
<td>11</td>
<td>SPRY2*, RNF125, HHLA3, KLF3, C9orf167, PLEKHG4B, CYR61*, HIVEP1, ODZ2, OSBPL3, DUSP1*</td>
</tr>
<tr>
<td>PD-0332991</td>
<td>CDK4</td>
<td>4</td>
<td>PUM2, COX18, AVPI1, CAV1*</td>
</tr>
<tr>
<td>PF2341066</td>
<td>c-MET</td>
<td>12</td>
<td>ELF2, MET*, LRMP, HGF*, CBFA2T3, TSEN34, ANP32A, TM4SF1, KIF2A, ENAH, RPA2, IT-PRIPL1</td>
</tr>
<tr>
<td>PHA-665752</td>
<td>c-MET</td>
<td>7</td>
<td>SYAP1, MRPL24, INHBB, SPCS2, TNFRSF1B, MICB, HGF*</td>
</tr>
<tr>
<td>PLX4720</td>
<td>RAF</td>
<td>12</td>
<td>PLEKHH3, MEX3C, VPS33B, ANKAR*, ACP5, B3GALNT1, TNFAIP2, ADORA1*, PHACTR1, PLP2, IL20RA, PSORS1C1</td>
</tr>
<tr>
<td>RAF265</td>
<td>RAF</td>
<td>6</td>
<td>PIK3CD*, SFPQ, SYT17, RGS6, C15orf57, TMEM79</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>RTF</td>
<td>12</td>
<td>LAIR1, MDM4, RBBP5, RBM12, WFS1, FBXO46, C9orf3, RPL22, FN1, CD48, BLM*, NCBP2</td>
</tr>
<tr>
<td>TAE684</td>
<td>ALK</td>
<td>2</td>
<td>ARID3A, SP1*</td>
</tr>
<tr>
<td>TAE684</td>
<td>ALK</td>
<td>2</td>
<td>ARID3A, SP1*</td>
</tr>
<tr>
<td>TKI258</td>
<td>FGFR</td>
<td>4</td>
<td>WFDC3, SDC4*, INPP5B, FECH</td>
</tr>
<tr>
<td>Topotecan</td>
<td>TOP2</td>
<td>3</td>
<td>SLFN11*, HSPB8, CD63</td>
</tr>
<tr>
<td>ZD-6474</td>
<td>EGFR</td>
<td>3</td>
<td>APOO, NMI*, KLF2*</td>
</tr>
</tbody>
</table>
Discussion

- We have proposed an innovative method of variable selection for general high-dimensional nonlinear systems, established the consistency of the proposed method, and successfully applied the proposed method to personalized medicine.

- The computational issue involved in the proposed method is resolved by implementing a parallel adaptive MCMC algorithm on the OpenMP platform.

- Feed-forward neural networks have been traditionally viewed as a blackbox approximator to an objective function. However, the proposed research indicates that this view is not completely correct for BNN: The structures of the networks sampled from the posterior distribution indicate the relevance of the selected covariates to the output variable.
The multiple-hidden-layer neural network with a small central layer has been widely used for reducing the dimensionality of image data, where the outputs of the central layer units can be viewed as the nonlinear principal component vectors of the high-dimensional data. This is termed as deep learning in computational science. From the perspective of nonlinear dimension reduction, the proposed research, which focuses on variable selection, can be viewed as a complementary work to deep learning.