Package ‘BNN’

November 8, 2017

Type Package
Title Bayesian Neural Network for High-Dimensional Nonlinear Variable Selection
Version 1.0.0
Date 2017-11-08
Author Bochao Jia, Faming Liang
Maintainer Bochao Jia <jbc409@ufl.edu>
Depends R (>= 3.0.2)
Description This package is to perform Bayesian variable selection for high-dimensional nonlinear systems. The computation can be accelerated using multiple CPUs. The package can also be used to test nonlinearity for a general regression problem.
License GPL-2
LazyLoad true
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-11-08 21:56:57 UTC
RoxygenNote 6.0.1

R topics documented:

BNN-package ... 2
BNNprior ... 3
BNNsel ... 4
Topotecan ... 5

Index 6
BNN-package

Bayesian Neural Networks for High-Dimensional Nonlinear Variable Selection

Description

This package is to perform Bayesian variable selection for high-dimensional nonlinear systems. The computation can be accelerated using multiple CPUs. The package can also be used to test nonlinearity for a general regression problem.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>BNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2017-11-08</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

The Bayesian neural network used in the package is a one-hidden layer feedforward neural network with shortcut connections. The first module of the package is to calculate the prior probabilities assigned to the class of linear models (i.e., those networks with only shortcut connections) and the class of nonlinear models; and the second module is to perform nonlinear variable selection and calculate the posterior probabilities of the classes of linear and nonlinear models.

Author(s)

Bochao Jia, Faming Liang
Maintainer: Bochao Jia<jbc409@ufl.edu>

References

Examples

```r
#library(BNN)
#BNNprior(50, 1, hid_num = 3, lambda=0.025, total_iteration = 1000000, popN = 20)
```
BNNprior

Prior Probability of Bayesian Neural Networks

Description
Calculating the prior probability of linear and nonlinear classes of BNN models.

Usage
BNNprior(dimX, dimY, hid_num = 3, lambda = 0.025, total_iteration = 1000000, popN = 20)

Arguments
- dimX: Dimension of the input data.
- dimY: The dimension of response data. It is restricted to 1 in the current version of the package.
- hid_num: Number of hidden units. The default setting is 3.
- lambda: The prior probability for each connection of the neural network being selected for the final model. The default setting is 0.025.
- total_iteration: Number of total iterations, default of 1000000.
- popN: Number of Markov Chains, default of 20.

Value
- prob: Prior probability assigned to the class of linear models.

Author(s)
Bochao Jia and Faming Liang

References

Examples
#library(BNN)
#BNNprior(50, 1, hid_num = 3, lambda = 0.025, total_iteration = 1000000, popN = 20)
BNNsel

Bayesian Neural Network for Variable Selection

Description
Perform variable selection and calculate posterior probabilities for the classes of linear and non-linear of models.

Usage
BNNsel(X,Y,train_num, hid_num = 3, lambda=0.025,total_iteration = 1000000, popN = 20, nCPUs = 20)

Arguments
- X: a n x p input data matrix.
- Y: response vector.
- train_num: Number of training samples. The default setting is 80% of the input samples.
- hid_num: Number of hidden units. The default setting is 3.
- lambda: The prior probability for each connection of the neural network being selected for the final model. The default setting is 0.025.
- total_iteration: Number of iterations. The default setting is 1000,000.
- popN: Number of Markov Chains in a parallel run. The default setting is 20.
- nCPUs: Number of CPUs to be used in the simulation. The default setting is 20.

Value
A list of five elements:
- net: Marginal inclusion probability of each connection of the neural network.
- prob: Posterior probability of the class of linear models.
- mar: Marginal inclusion probability of each input variable, which can be used for variable selection based on a multiple-hypothesis test or the median probability model criterion.
- fit: Fitted value for the response vector of training data.
- pred: Predicted value for the response vector of testing data.

Author(s)
Bochao Jia and Faming Liang

References
Topotecan

Examples

```r
#library(BNN)
#data(Topotecan)
#X <- Topotecan$X
#Y <- Topotecan$Y
#BNNsel(X,Y, hid_num = 3,lambda=0.025,total_iteration = 1000000, popN = 20, nCPUs = 20)
```

<table>
<thead>
<tr>
<th>Topotecan</th>
<th>Example dataset</th>
</tr>
</thead>
</table>

Description

A subset drug response data extracted from the cancer cell line encyclopedia (CCLE) database for the drug topotecan.

Usage

data(Topotecan)

Format

- **X** a \(n \times p \) data matrix; \(n=491, p=89 \)
- **Y** response vector.

References

Index

*Topic BNNprior
 BNNprior, 3
*Topic BNNsel
 BNNsel, 4
*Topic datasets
 Topotecan, 5
*Topic package
 BNN-package, 2

BNN-package, 2
BNNprior, 3
BNNsel, 4
Topotecan, 5