Homework Assignment 5.

1. (a) In class we saw several ways to approximate the derivative of \(f'(x_0) \) of a smooth function by finite-differences. There are other type of approximations. Show that

\[
\Delta_h^{(3)} f(x_0) := \frac{1}{6h} [2f(x_0 + h) + 3f(x_0) - 6f(x_0 - h) + f(x_0 - 2h)],
\]

(1)

can approximate \(f'(x_0) \) up to an error \(O(h^2) \).

(b) Consider four values \(x_1 < x_2 < x_3 < x_4 \). Find an approximation of \(f''(x_2) \) based on the four values \(y_1 = f(x_1) \), \(y_2 = f(x_2) \), \(y_3 = f(x_3) \), \(y_4 = f(x_4) \). What is the order of the error approximation in terms of the \(h_1 = x_2 - x_1 \), \(h_2 = x_3 - x_2 \), and \(h_3 = x_4 - x_3 \).

2. We saw in class that the explicit method is stable when applied to the heat equation

\[
\begin{align*}
\partial_\tau u(\tau, x) - \partial_{xx} u(\tau, x) &= 0, \quad \tau > 0; \\
u(0, x) &= \Phi(x).
\end{align*}
\]

(2)

if \(\alpha := \frac{\delta \tau}{(\delta x)^2} \leq 1/2 \). Using the same type of arguments, find an analog stability condition for the explicit method when applied to the more general system

\[
\begin{align*}
\partial_t u(t, x) + \mu(t, x) \partial_x u(t, x) + a(t, x) \partial_{xx} u(t, x) - r u(t, x) &= 0, \quad t < T, x > 0; \\
u(T, x) &= \Phi(x).
\end{align*}
\]

(3)

Assuming that \(\mu, a, \) and \(r \) are constant with \(a \) being positive. What can it be said if the coefficients therein are functions satisfying certain boundedness conditions?

3. Consider the Black-Scholes PDE for the value of an option \(V(t, s) \) with terminal condition \(V(T, s) = (K - s)_+ \). Write a program to find a numerical approximation for \(V \) using the explicit method and the following boundary conditions:

\[
\lim_{s \to 0} \frac{\partial^2 V}{\partial s^2} = 0, \quad \lim_{s \to \infty} \frac{\partial^2 V}{\partial s^2} = 0.
\]

Compare the performance of your program with the values obtained from the Black-Scholes formula using the following pricing parameters: \(S_0 = 100, K \in \{90, 100, 110\} \), \(r = 2\% \), \(T = 1 \) year, and \(\sigma \in \{15\%, 30\%, 50\%\} \).

4. Repeat the previous exercise using this time the fully implicit method.