1. a) Is the length of the t confidence interval for a mean a constant or a random variable?
b) Does the expected length of the t confidence interval go to zero when $n \to \infty$ for normally distributed data?
c) Does the expected length of the t confidence interval go to zero when $n \to \infty$ for data that are distributed as a Cauchy?
Justify all your answers.

2. What is the minimum sample size needed to ensure that the length of the nominal 99% score confidence interval for an unknown proportion is 0.08?
Why is it necessary to say nominal?

3. Is the pooled estimate of the variance for the two sample t confidence interval unbiased?
Why exactly is the assumption of a common variance required?

4. Suppose we have one observation $X \sim N(\mu, 4)$. We want to test $H_0 : \mu = 1$ vs. $H_1 : \mu > 1$.
a) Is the null hypothesis simple?
b) Is the alternative hypothesis simple?
c) Consider the specific test which rejects H_0 if $X > 2.5$, accepts H_0 if $X < 2$ and if X is between 2 and 2.5, then it rejects H_0 provided an auxiliary fair coin toss results in a head.
i) Compute the type I error rate of this test.
ii) Compute the power of this test at $\mu = 1.01, 1.5, 3$.
iii) Where do you think the power converges when $\mu \to \infty$? Do you think that that is where the power should converge when $\mu \to \infty$?