1. Consider the survival model characterized by the following piecewise-constant hazard function:

\[
\lambda(t) = \begin{cases}
\lambda_1, & 0 \leq t < \pi_1 \\
\lambda_2, & \pi_1 \leq t < \pi_2 \\
\lambda_3, & \pi_2 \leq t
\end{cases}
\]

where \(\pi_1 \) and \(\pi_2 \) are known constants. Derive the MLEs of \(\lambda_1 \), \(\lambda_2 \), and \(\lambda_3 \) and their standard errors based on right-censored data \((x_i, \delta_i), i = 1, \ldots, n\).

2. A data set concerning leukemia remission is given in the data frame `leuk` with components `time`, `status`, and `trt`; see Le (1997, page 52) for a full explanation of the data. For the `trt=1` group, one has the Kaplan-Meier estimate \(\hat{S}(7) = 0.807 \) with \(\text{se}(\hat{S}(7)) = 0.0869 \); you may use `summary(survfit(...))` to obtain these.

 (a) Manually confirm the calculation of \(\hat{S}(7) \) and \(\text{se}(\hat{S}(7)) \).

 (b) Assuming an exponential distribution, recalculate the estimate of \(S(7) \) and the associated standard error.

Due April 17