Nonparametric Inference In Functional Data

Zuofeng Shang

Purdue University

Joint work with Guang Cheng from Purdue Univ.
An Example

Consider the functional linear model:

\[Y = \alpha + \int_0^1 X(t)\beta(t)dt + \epsilon, \]

where

- \(\beta \in W_2^m(0, 1) \), the Sobolev space of order \(m \)
- \(X \) is a random process
- \(\epsilon \) is zero-mean error
In this talk, we address the following questions \textbf{in a unified framework}:

- how to construct confidence interval for the regression mean $\mu = \alpha + \int_0^1 x(t)\beta(t)dt$?
- how to construct prediction interval for Y_{future}?
- how to test $H_0 : \beta = \beta_0$ versus $H_1 : \beta \neq \beta_0$?
In this talk, we address the following questions in a unified framework:

- how to construct confidence interval for the regression mean \(\mu = \alpha + \int_0^1 x(t)\beta(t)dt \)?
- how to construct prediction interval for \(Y_{future} \)?
- how to test \(H_0 : \beta = \beta_0 \) versus \(H_1 : \beta \neq \beta_0 \)?
In this talk, we address the following questions in a unified framework:

- how to construct confidence interval for the regression mean \(\mu = \alpha + \int_0^1 x(t)\beta(t)dt \)?
- how to construct prediction interval for \(Y_{future} \)?
- how to test \(H_0 : \beta = \beta_0 \) versus \(H_1 : \beta \neq \beta_0 \)?
General Aim

In this talk, we address the following questions in a unified framework:

- how to construct confidence interval for the regression mean \(\mu = \alpha + \int_0^1 x(t)\beta(t)dt \)?
- how to construct prediction interval for \(Y_{future} \)?
- how to test \(H_0 : \beta = \beta_0 \) versus \(H_1 : \beta \neq \beta_0 \)?
Literature Review

- The existing methods for inference rely on functional principle component analysis (FPCA), which requires the covariance kernel and reproducing kernel to share common ordered eigenfunctions, i.e., *perfectly aligned*; Müller and Stadtmüller (2005), Cai and Hall (2006), Hall and Horowitz (2007), etc.

- There is a lack of unified treatment for various inference problems such as confidence/prediction interval construction, (adaptive) hypothesis testing, and functional contrast testing.
The existing methods for inference rely on functional principle component analysis (FPCA), which requires the covariance kernel and reproducing kernel to share common ordered eigenfunctions, i.e., perfectly aligned; Müller and Stadtmüller (2005), Cai and Hall (2006), Hall and Horowitz (2007), etc.

There is a lack of unified treatment for various inference problems such as confidence/prediction interval construction, (adaptive) hypothesis testing, and functional contrast testing.
Model and Assumptions:

- **Model:**
 \[Y_i = \alpha + \int_0^1 X_i(t)\beta(t)dt + \epsilon_i, \]
 where \((Y_1, X_1), \ldots, (Y_n, X_n)\) are \(iid\) samples and \(E\{\epsilon_i\} = 0, E\{\epsilon_i^2\} = 1\)

- **Functional parameter:** \(\beta \in W^m_2(0, 1)\), the \(m\)-order Sobolev space

- **Covariance function:** \(C(s, t) = E\{X(s)X(t)\}\) satisfies
 \[\int_0^1 C(s, t)\beta(s)ds = 0 \iff \beta = 0 \]
Model and Assumptions:

- **Model:**
 \[Y_i = \alpha + \int_0^1 X_i(t)\beta(t)dt + \epsilon_i, \]
 where \((Y_1, X_1), \ldots, (Y_n, X_n)\) are iid samples and \(E\{\epsilon_i\} = 0,\)
 \(E\{\epsilon_i^2\} = 1\)

- **Functional parameter:** \(\beta \in W^m_2(0, 1)\), the \(m\)-order Sobolev space

- **Covariance function:** \(C(s, t) = E\{X(s)X(t)\}\) satisfies
 \[\int_0^1 C(s, t)\beta(s)ds = 0 \iff \beta = 0 \]
Model and Assumptions:

- **Model:**
 \[Y_i = \alpha + \int_0^1 X_i(t)\beta(t)dt + \epsilon_i, \]
 where \((Y_1, X_1), \ldots, (Y_n, X_n)\) are iid samples and \(E\{\epsilon_i\} = 0, E\{\epsilon_i^2\} = 1\)

- **Functional parameter:** \(\beta \in W_2^m(0, 1)\), the \(m\)-order Sobolev space

- **Covariance function:** \(C(s, t) = E\{X(s)X(t)\}\) satisfies
 \[\int_0^1 C(s, t)\beta(s)ds = 0 \iff \beta = 0 \]
FPCA Estimation

- Sample covariance function:
 \[
 \hat{C}(s, t) = \frac{1}{n} \sum_{i=1}^{n} (X_i(s) - \bar{X}(s))(X_i(t) - \bar{X}(t))
 \]

- Karhunen-Loéve decomposition:
 \[
 C(s, t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s)\psi_k(t) \quad \text{with} \quad \lambda_1 \geq \lambda_2 \geq \ldots
 \]
 \[
 \hat{C}(s, t) = \sum_{k=1}^{\infty} \hat{\lambda}_k \hat{\psi}_k(s)\hat{\psi}_k(t) \quad \text{with} \quad \hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \ldots
 \]
 Estimate \(\beta \) by \(\hat{\beta} = \hat{b}_1 \hat{\psi}_1 + \hat{b}_2 \hat{\psi}_2 + \ldots + \hat{b}_k \hat{\psi}_k + \ldots \), where \(\hat{b}_j \) are estimated basis coefficients.
FPCA Estimation

- Sample covariance function:

\[
\hat{C}(s, t) = \frac{1}{n} \sum_{i=1}^{n} (X_i(s) - \bar{X}(s))(X_i(t) - \bar{X}(t))
\]

- Karhunen-Loéve decomposition:

 \[
 C(s, t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s)\psi_k(t) \text{ with } \lambda_1 \geq \lambda_2 \geq \ldots
 \]

 \[
 \hat{C}(s, t) = \sum_{k=1}^{\infty} \hat{\lambda}_k \hat{\psi}_k(s)\hat{\psi}_k(t) \text{ with } \hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \ldots
 \]

- Estimate \(\beta \) by \(\hat{\beta} = \hat{b}_1 \hat{\psi}_1 + \hat{b}_2 \hat{\psi}_2 + \cdots + \hat{b}_k \hat{\psi}_k \), where \(\hat{b}_j \) are estimated basis coefficients.
FPCA Estimation

- Sample covariance function:

\[
\hat{C}(s, t) = \frac{1}{n} \sum_{i=1}^{n} (X_i(s) - \bar{X}(s))(X_i(t) - \bar{X}(t))
\]

- KarhunenLoève decomposition:

\[
C(s, t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s)\psi_k(t) \text{ with } \lambda_1 \geq \lambda_2 \geq \ldots
\]

\[
\hat{C}(s, t) = \sum_{k=1}^{\infty} \hat{\lambda}_k \hat{\psi}_k(s)\hat{\psi}_k(t) \text{ with } \hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \ldots
\]

- Estimate \(\beta \) by \(\hat{\beta} = \hat{b}_1 \hat{\psi}_1 + \hat{b}_2 \hat{\psi}_2 + \cdots + \hat{b}_n \hat{\psi}_n \), where \(\hat{b}_j \) are estimated basis coefficients.
Penalized Estimation:

\((\hat{\alpha}, \hat{\beta}) = \arg \min_{\alpha \in \mathbb{R}, \beta \in W^m_2(0,1)} \ell_{n, \lambda}(\alpha, \beta), \)

where

\[
\ell_{n, \lambda}(\alpha, \beta) = \frac{1}{2n} \sum_{i=1}^{n} (Y_i - \alpha - \int_0^1 X_i(t)\beta(t)dt)^2 + \frac{\lambda}{2} \int_0^1 |\beta^{(m)}(t)|^2 dt.
\]
Advantage of Penalized Estimation

- No perfect alignment assumption
- Provides a unified framework for inference
- Easy to make nonparametric inference within regularization framework
- Estimation performance is better
Advantage of Penalized Estimation

- No perfect alignment assumption
- Provides a unified framework for inference
- Easy to make nonparametric inference within regularization framework
- Estimation performance is better
Advantage of Penalized Estimation

- No perfect alignment assumption
- Provides a unified framework for inference
- Easy to make nonparametric inference within regularization framework
- Estimation performance is better
Advantage of Penalized Estimation

- No perfect alignment assumption
- Provides a **unified framework** for inference
- Easy to make nonparametric inference within regularization framework
- Estimation performance is better
k_0 controls the alignment between covariance and reproducing kernels. Larger value of k_0 yields more misalignment.
Assumption: Simultaneous Diagonalization

There exists functions φ_ν and nondecreasing sequences $\rho_\nu \asymp \nu^{2k}$ for some $k > 0$ such that for any $\nu, \mu \geq 1$,

$$\int_0^1 \int_0^1 C(s, t) \varphi_\nu(s) \varphi_\mu(t) ds dt = \delta_{\nu\mu},$$

and

$$\int_0^1 \varphi^{(m)}_\nu(t) \varphi^{(m)}_\mu(t) dt = \rho_\nu \delta_{\nu\mu}.$$

Furthermore, any $\beta \in W^m_2(0, 1)$ satisfies $\beta = \sum_\nu b_\nu \varphi_\nu$ for some real sequence b_ν.
Construction of CI

Let $\mu_0 = \alpha + \int_0^1 x_0(t)\beta(t)dt$ be the regression mean at $X = x_0$. The 95% confidence interval for μ_0 is

$$CI : \hat{\mu}_0 \pm 1.96\sigma_n/\sqrt{n},$$

where $\hat{\mu}_0 = \hat{\alpha} + \int_0^1 x_0(t)\hat{\beta}(t)dt$, $\sigma_n^2 = 1 + \sum_\nu \frac{x_\nu^2}{1 + \lambda\rho_\nu}$, $x_\nu = \int_0^1 x_0(t)\varphi_\nu(t)dt$.
Construction of PI

Let Y_0 be future response generated from $Y_0 = \mu_0 + \epsilon$, then the 95% prediction interval for Y_0 is

$$PI : \hat{\mu}_0 \pm 1.96 \sqrt{1 + \frac{\sigma_n^2}{n}}.$$
Theoretical Validity

Theorem

If ϵ is sub-exponential, the true function β_0 is suitably smooth, and λ is properly tuned, e.g., $\lambda \asymp n^{-k/(2k+1)}$. Then as $n \to \infty$,

$$P(\mu_0 \in CI) \to 0.95, \text{ and } P(Y_0 \in PI) \to 0.95.$$
Testing hypotheses $H_0 : \alpha = \alpha_0, \beta = \beta_0$ versus $H_1 : H_0$ is not true. Define the penalized likelihood ratio test (PLRT)

$$PLRT_n = \ell_{n,\lambda}(\alpha_0, \beta_0) - \ell_{n,\lambda}(\hat{\alpha}, \hat{\beta}),$$

where $(\hat{\alpha}, \hat{\beta})$ is the penalized MLE.
Wilks Phenomenon

Wilks phenomenon means that the null limit distribution of the likelihood ratio is free of any nuisance parameters and design distribution.

Theorem

Suppose H_0 holds and $E\{\epsilon^4\} < \infty$, and λ is suitably tuned, e.g., $\lambda \approx n^{-4k/(4k+1)}$. Then

$$2n\sigma^2 \cdot PLRT_n \overset{d}{=} \chi^2_{u_n},$$

where

$$\sigma^2 = \frac{\int_0^\infty (1 + x^{2k})^{-1} dx}{\int_0^\infty (1 + x^{2k})^{-2} dx}, \quad u_n = \frac{1}{c\lambda^{\frac{1}{2k}}} \left(\frac{\int_0^1 (1 + x^{2k})^{-1} dx}{\int_0^1 (1 + x^{2k})^{-2} dx}\right)^2,$$

c is constant free of α_0, β_0, distribution of X.

Wilks Phenomenon

Wilks phenomenon means that the null limit distribution of the likelihood ratio is free of any nuisance parameters and design distribution.
Suppose we want to test $H_0 : \beta = 0$, but the following local alternative hypothesis is true:

$$H_{1n} : \beta = \beta_n,$$

where β_n satisfies $\|\beta_n\|_{L^2} \geq cn^{-2k/(4k+1)}$.

Theorem

For arbitrary $\varepsilon > 0$, there exist c such that for any $n \geq 1$:

$$\inf_{\beta_n \in W_2^{m}(0,1): \|\beta_n\|_{L^2} \geq cn^{-2k/(4k+1)}} P_{\beta_n} (\text{reject } H_0) \geq 1 - \varepsilon.$$
An Example: Standard Brownian Motion

When \(m = 2 \) (cubic spline) and \(X \) is Brownian motion with covariance function

\[
C(s, t) = \min\{s, t\}, \ s, t \in (0, 1),
\]

we have \(\sigma^2 \approx 1.08 \) and \(u_n \approx 0.31\lambda^{-1/6} \). Therefore,

\[
2n(1.08) \cdot PLRT_n \overset{d}{\approx} \chi_{u_n}^2.
\]
If the smoothness degrees of both X and β are unknown, how well can we do? We will propose a testing procedure adaptive to these smoothness degrees and show that our procedure achieves the minimax rate of testing.
Let $PLRT(k)$ be the penalized likelihood ratio test associated with k, and
\[
\tau_k = \frac{PLRT(k) - E\{PLRT(k)\}}{\sqrt{Var(PLRT(k))}}, \ k = 1, 2, \ldots, k_n.
\]

Define
\[
AT = B_n(\max_{1 \leq k \leq k_n} \tau_k - B_n),
\]
where B_n satisfies $2\pi B_n^2 \exp(B_n^2) = k_n^2$.
Size of the Test

A valid test should achieve the correct size.

Theorem

Under $H_0: \beta = 0$, if $k_n \asymp (\log n)^{d_0}$, for some constant $d_0 \in (0, 1/2)$, then for any $\gamma \in (0, 1)$,

$$P(AT \leq c_\gamma) \rightarrow 1 - \gamma, \quad \text{as } n \rightarrow \infty,$$

where $c_\gamma = -\log(-\log(1 - \gamma))$.
Suppose k^* is the true value of k. Let

$$\delta(n, k^*) = n^{-2k^*/(4k^*+1)}(\log \log n)^{k^*/(4k^*+1)}.$$

Theorem

Suppose $k_n \asymp (\log n)^{d_0}$, for some constant $d_0 \in (0, 1/2)$. Then, for any $\varepsilon \in (0, 1)$, there exists $c > 0$ s.t. for any $n \geq 1$,

$$\inf_{\|\beta\|_{L^2} \geq c \delta(n, k^*)} P_{\beta}(\text{reject } H_0) \geq 1 - \varepsilon.$$
Simulation Setup

- \(X(t) = \sum_{j=1}^{100} \sqrt{\lambda_j} \eta_j V_j(t) \), where

\[
\lambda_j = (j - 0.5)^{-2} \pi^{-2}, \quad V_j(t) = \sqrt{2} \sin((j - 0.5)\pi t),
\]

\(\eta_1, \ldots, \eta_{100} \sim iid N(0,1) \).

- The test function is \(\beta_{0,\xi}^{B} = \frac{B}{\sqrt{\sum_{k=1}^{\infty} k^{-2\xi - 1}}} \sum_{j=1}^{100} j^{-\xi - 0.5} V_j(t) \), where \(B = 0, 0.1, 1 \) and \(\xi = 0.1, 0.5, 1 \).

- Draw \(n \) iid samples from \(Y = \int_{0}^{1} X(t)\beta_{0}(t)dt + N(0,1) \) for \(n = 100, 500 \).
Figure: Plots of $\beta_0(t)$ when $B = 1$
Coverage Proportion of Confidence Interval

Table: 100× coverage proportion (average length) of CI when $B = \xi = 1$

<table>
<thead>
<tr>
<th>n</th>
<th>100</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95.11(0.56)</td>
<td>94.99(0.39)</td>
</tr>
</tbody>
</table>
Hilgert, Mas and Verzelen (2013) proposed an FPCA-based testing procedure which is adaptive to the truncation parameter k_n. We compare our approaches with theirs, denoted HMV.

Table: 100×size when $B = 0$

<table>
<thead>
<tr>
<th></th>
<th>$n = 100$</th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMV</td>
<td>4.97</td>
<td>5.26</td>
</tr>
<tr>
<td>PLRT</td>
<td>5.45</td>
<td>5.19</td>
</tr>
<tr>
<td>AT</td>
<td>5.13</td>
<td>5.04</td>
</tr>
</tbody>
</table>
Power Comparison with Hilgert, Mas and Verzelen (2013)

Table: 100×power when $n = 100$

<table>
<thead>
<tr>
<th>Test</th>
<th>$B = 0.1$</th>
<th>$B = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\xi = 0.1$</td>
<td>HMV 5.80</td>
<td>81.78</td>
</tr>
<tr>
<td></td>
<td>AT 6.12</td>
<td>81.56</td>
</tr>
<tr>
<td></td>
<td>PLRT 20.00</td>
<td>84.20</td>
</tr>
<tr>
<td>$\xi = 1$</td>
<td>HMV 7.07</td>
<td>99.84</td>
</tr>
<tr>
<td></td>
<td>AT 9.47</td>
<td>99.98</td>
</tr>
<tr>
<td></td>
<td>PLRT 23.95</td>
<td>99.98</td>
</tr>
</tbody>
</table>
Power Comparison with Hilgert, Mas and Verzelen (2013)

<table>
<thead>
<tr>
<th>Test</th>
<th>$B = 0.1$</th>
<th>$B = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\xi = 0.1$</td>
<td>HMV 8.48</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>AT 9.57</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>PLRT 21.27</td>
<td>100</td>
</tr>
<tr>
<td>$\xi = 1$</td>
<td>HMV 16.13</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>AT 26.51</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>PLRT 34.08</td>
<td>100</td>
</tr>
</tbody>
</table>
Summary

- We propose applicable procedures for inference in functional data analysis.
- Our approaches do not require perfect alignment.
- Our approaches are asymptotic valid, i.e., desired size and coverage probability.
- The PLRT and adaptive testing procedures are more powerful than existing ones.
- Extensions to general cases not reported here:
 - quasi-likelihood framework
 - composite hypotheses
 - adaptive testing in non-Gaussian error
Thank you for your attention!