Available Software:

[6] Li, Y., Datta, J., Craig, B. A. and Bhadra, A. (2019+). Joint Mean-Covariance Estimation via the Horseshoe with an Application in Genomic Data Analysis. (submitted).
MATLAB code.

[5] Li, Y., Craig, B. A. and Bhadra, A. (2019). The graphical horseshoe estimator for inverse covariance matrices. Journal of Computational and Graphical Statistics (to appear).
MATLAB code.

[4] Bhadra, A., Datta, J., Polson, N. G. and Willard, B. (2017). The horseshoe+ estimator of ultra-sparse signals. Bayesian Analysis 12, 1105–1131.
Stan code.

[3] Bhadra, A., Datta, J., Polson, N. G. and Willard, B. (2016). Default Bayesian analysis with global-local shrinkage priors. Biometrika 103, 955–969.
Stan code.

[2] Bhadra, A and Carroll, R. J. (2016). Exact sampling of the unobserved covariates in Bayesian spline models for measurement error problems. Statistics and Computing 26, 827-840.
MATLAB code.

[1] Feldman, G., Bhadra, A. and Kirshner, S. (2014). Bayesian feature selection in high-dimensional regression in presence of correlated noise. Stat 3, 258-272.
MATLAB code.


Home | Curriculum Vitæ | Research | Presentations | Teaching | Software