Topic 2 : Simple Linear Regression

Outline
- Description of linear regression model
- Least Squares
- Fitted regression line
- Residuals

Leaning Tower of Pisa Example
- Dependent (response) variable: lean (Y)
- Independent (predictor) variable: year (X)
- Have $i = 1, 2, \ldots, n = 13$ pairs of (X_i, Y_i)
- $Y_i = i^{\text{th}}$ dependent variable
- $X_i = i^{\text{th}}$ independent variable
- Will build a model such that $E(Y_i) = f(X_i)$

Is Linear Trend Reasonable?
Simple Linear Regression Model

\[Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \]

- \(\beta_0 \) is the intercept
- \(\beta_1 \) is the slope
- \(\varepsilon_i \) is the \(i \)th random error term
 - Mean 0 \(\iff \) \(E(\varepsilon_i) = 0 \)
 - Variance \(\sigma^2 \) \(\iff \) \(\text{Var}(\varepsilon_i) = \sigma^2 \)
 - Uncorrelated \(\iff \) \(\text{Cov}(\varepsilon_i, \varepsilon_j) = 0 \)

Features of the Model

- \(Y_i = \) constant term + random term
 - constant term is \(\beta_0 + \beta_1 X_i \)
 - random term is \(\varepsilon_i \)
- Implies \(Y_i \) is a random variable
 - \(E(Y_i) = \beta_0 + \beta_1 X_i + 0 \)
 \(\rightarrow \) \(E(Y) = \beta_0 + \beta_1 X \) (underlying relationship)
 - \(\text{Var}(Y_i) = 0 + \sigma^2 \)
 \(\rightarrow \) variance the same regardless of \(X_i \)
 - \(\text{Cov}(Y_i, Y_j) = \text{Cov}(\varepsilon_i, \varepsilon_j) = 0 \)

Estimation of Model Parameters

- Consider deviations of \(Y_i \) from \(E(Y_i) \)
 \[Y_i - (\beta_0 + \beta_1 X_i) \]
- Method of least squares
 - Find estimators of \(\beta_0, \beta_1 \) which minimize
 \[Q = \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2 \]
 - Deviations can be positive or negative
 - Squared deviations only contribute positively
 - Calculus of solutions shown on pages 17-18

Estimating the Slope

- \(\beta_1 \) is the true unknown slope
- Defines change in \(E(Y) \) for change in \(X \)
 \[\beta_1 = \frac{\Delta E(Y)}{\Delta X} \rightarrow \Delta E(Y) = \beta_1 \Delta X \]
- \(b_1 \) is the least squares estimate of \(\beta_1 \)
 \[b_1 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2} \]
- When will \(b_1 \) be negative?
Estimating the Intercept

- β_0 is the true unknown intercept
- Defines $E(Y)$ when $X = 0$
 \[E(Y) = \beta_0 + \beta_1 \times 0 = \beta_0 \]
- Usually not of interest (scope of model)
- b_0 is the least squares estimate of β_0
 \[b_0 = \bar{Y} - b_1 \bar{X} \]
- Fitted line goes through (\bar{X}, \bar{Y})

Properties of Estimates

- **Gauss-Markov** theorem states that in a linear regression these least squares estimators
 - Are unbiased $\implies E(b_i) = \beta_i$
 - Have minimum variance among all unbiased linear estimators
 - BLUE = best linear unbiased estimators
- In other words, these estimates are the most precise of any estimator where
 - b_i is of the form $\sum k_i Y_i$
 - $E(b_i) = \beta_i$
- Note: No distribution for the ϵ_i has been specified

Estimated Regression Line

- The estimated regression line is
 \[\hat{Y}_i = b_0 + b_1 X_i \]
- \hat{Y}_i is known as the fitted value
- Each fitted value also equals the mean response for that X_i (recall $Y|X_i$ a random variable)
- Extension of the Gauss-Markov theorem
 - $E(\hat{Y}_i) = E(Y_i)$
 - \hat{Y}_i minimum variance among linear estimators

Example

The Graduate Chair of Department Z administered a newly designed entrance test to the 30 incoming Master’s students as part of a study to determine whether a student’s grade point average (GPA) at the end of the first year (Y) can be predicted from the entrance test score (X). The results of the study follow. Assume that the linear regression model is appropriate.

Based on the following table
1. Obtain the least squares estimate of β_0 and β_1.
2. State the regression function
3. Obtain a point estimate for an entrance test score of 5.0
4. State the expected change in grade point if the entrance test score were 0.5 units higher
Answers

1. Obtain the least squares estimates of β_0 and β_1.

2. State the estimated regression function

3. Obtain a point estimate for an entrance test score of 5.0

4. State the expected change in grade point if the entrance test score were 0.5 units higher

Properties of Residuals

- The residuals are the differences between the observed and fitted values

 $e_i = Y_i - \hat{Y}_i$

- This is not the error term $\varepsilon_i = Y_i - E(Y_i)$

- The e_i is observable while ε_i is not

- Residuals are highly useful in assessing the appropriateness of the model

\[\begin{array}{cccccc}
X & Y & X - \bar{X} & Y - \bar{Y} & (X - \bar{X})(Y - \bar{Y}) & (X - \bar{X})^2 \\
5.5 & 3.1 & 0.5 & 0.6 & 0.30 & 0.25 \\
4.8 & 2.3 & -0.2 & -0.2 & 0.04 & 0.04 \\
4.7 & 3.0 & -0.3 & 0.5 & -0.15 & 0.09 \\
3.9 & 1.9 & -1.1 & -0.6 & 0.66 & 1.21 \\
4.5 & 2.5 & -0.5 & 0.0 & 0.00 & 0.25 \\
6.2 & 3.7 & 1.2 & 1.2 & 1.44 & 1.44 \\
6.0 & 3.4 & 1.0 & 0.9 & 0.90 & 1.00 \\
5.2 & 2.6 & 0.2 & 0.1 & 0.02 & 0.04 \\
4.7 & 2.8 & -0.3 & 0.3 & -0.09 & 0.09 \\
4.3 & 1.6 & -0.7 & -0.9 & 0.63 & 0.49 \\
4.9 & 2.0 & -0.1 & -0.5 & 0.05 & 0.01 \\
5.4 & 2.9 & 0.4 & 0.4 & 0.16 & 0.16 \\
5.0 & 2.3 & 0.0 & -0.2 & 0.00 & 0.00 \\
6.3 & 3.2 & 1.3 & 0.7 & 0.91 & 1.69 \\
4.6 & 1.8 & -0.4 & -0.7 & 0.28 & 0.16 \\
4.3 & 1.4 & -0.7 & -1.1 & 0.77 & 0.49 \\
5.0 & 2.0 & 0.0 & -0.5 & 0.00 & 0.00 \\
5.9 & 3.8 & 0.9 & 1.3 & 1.17 & 0.81 \\
4.1 & 2.2 & -0.9 & -0.3 & 0.27 & 0.81 \\
4.7 & 1.5 & -0.3 & -1.0 & 0.30 & 0.09 \\
100.0 & 50.0 & 0.0 & 0.0 & 7.66 & 9.12
\end{array} \]
Estimation of Error Variance

- In single population (i.e., ignoring X)

\[s^2 = \frac{\sum(Y_i - \bar{Y})^2}{n - 1} \]

- Unbiased estimate of σ^2
- One df lost by using \bar{Y} in place of μ

- In regression model

\[s^2 = \frac{\sum(Y_i - \hat{Y}_i)^2}{n - 2} \]

- Unbiased estimate of σ^2
- Two df lost by using (b_0, b_1) in place of (β_0, β_1)
- Also known as the mean square error (MSE)

SAS Proc Reg

```sas
proc reg data=a1;
  model lean=year/clb p r;
  output out=a2 p=pred r=resid;
  id year;
run;
```

```sas
proc gplot data=a2;
  plot resid*year/vref=0;
  where lean ne .;
run;
```

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>15804</td>
<td>15804</td>
<td>904.12</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>11</td>
<td>192.28571</td>
<td>17.48052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected</td>
<td>12</td>
<td>15997</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 4.18097 R-Square 0.9880
Dependent Mean 693.6923 Adj R-Sq 0.9869
Coeff Var 0.60271

Output Statistics

<table>
<thead>
<tr>
<th>Obs</th>
<th>year</th>
<th>Dep Var</th>
<th>Predicted</th>
<th>Std Error</th>
<th>Value Mean</th>
<th>Predict Residual</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>642.0000</td>
<td>637.7802</td>
<td>2.1914</td>
<td>4.2198</td>
<td>3.561</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>76</td>
<td>644.0000</td>
<td>647.0989</td>
<td>1.9354</td>
<td>-3.0989</td>
<td>3.706</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>77</td>
<td>656.0000</td>
<td>656.4176</td>
<td>1.6975</td>
<td>-0.4176</td>
<td>3.821</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>78</td>
<td>667.0000</td>
<td>665.7363</td>
<td>1.4863</td>
<td>1.2637</td>
<td>3.908</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>79</td>
<td>673.0000</td>
<td>675.0549</td>
<td>1.3149</td>
<td>-2.0549</td>
<td>3.969</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>688.0000</td>
<td>684.3736</td>
<td>1.2003</td>
<td>3.6264</td>
<td>4.005</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>81</td>
<td>696.0000</td>
<td>693.6923</td>
<td>1.1596</td>
<td>2.3077</td>
<td>4.017</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>82</td>
<td>698.0000</td>
<td>703.0110</td>
<td>1.2003</td>
<td>-5.0110</td>
<td>4.005</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>83</td>
<td>713.0000</td>
<td>712.3297</td>
<td>1.3149</td>
<td>0.6703</td>
<td>3.969</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>84</td>
<td>717.0000</td>
<td>721.6484</td>
<td>1.4863</td>
<td>-4.6484</td>
<td>3.908</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>85</td>
<td>725.0000</td>
<td>730.9670</td>
<td>1.6975</td>
<td>-5.9670</td>
<td>3.821</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>86</td>
<td>742.0000</td>
<td>740.2857</td>
<td>1.9354</td>
<td>1.7143</td>
<td>3.706</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>87</td>
<td>757.0000</td>
<td>749.6044</td>
<td>2.1914</td>
<td>7.3956</td>
<td>3.561</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>113</td>
<td>991.8901</td>
<td>9.9848</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Variable | DF | Estimate | Error | t Value | Pr > |t| |
|----------|----|----------|-------|---------|------|---|
| Intercept| 1 | -61.12088| 25.12982| -2.43 | 0.0333 |
| year | 1 | 9.31888 | 0.30991| 30.07 | <.0001 |

| Variable | DF | 95% Confidence Limits | |
|----------|----|------------------------|
| Intercept| 1 | -116.43124 -5.81052 |
| year | 1 | 8.63656 10.00080 |
Normal Error Regression Model

\[Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \]

- \(\beta_0 \) is the intercept
- \(\beta_1 \) in the slope
- \(\varepsilon_i \) is the \(i \)th random error term
 - \(\varepsilon_i \sim N(0, \sigma^2) \) — NEW
 - Uncorrelated — independent error terms
- Defines distribution of random variable \(Y \)
 \[Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2) \]

Maximum Likelihood Estimation

\[Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2) \]
\[f_i = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 X_i)^2 \right\} \]

- Likelihood function \(L = f_1 \times f_2 \times \cdots \times f_n \)
- Find \(\beta_0, \beta_1 \) and \(\sigma^2 \) which maximizes \(L \)
- Obtain similar estimators \(b_0 \) and \(b_1 \)
- Estimate of \(\sigma^2 \) is different

Normal Error Model

- Normal error assumption greatly simplifies the theory of analysis
- Sampling distributions used to construct confidence intervals / perform hypothesis tests follow known distributions (e.g., \(t, F \))
- While not always true in practice, most inference only sensitive to large departures from normality
- See pages 31-32 for more details

Background Reading

- Appendix A
- KNNL Chapters 1 and 2
- SAS template file \texttt{pisa.sas}