Diagnostics

- Diagnostics play a key role in both the development and assessment of multiple regression models.
- Most of the previous diagnostics carry over to multiple regression.
- However, given more than one predictor, must also consider relationship between predictors.
- Specialized diagnostics discussed later in Chpts 9 and 10.

Scatterplots

- Scatterplot matrix summarizes bivariate relationships between Y and X_j as well as between X_j and X_k ($j, k = 1, 2, ..., p - 1$):
 - Nature of bivariate relationships
 - Strength of bivariate relationships
 - Detection of outliers
 - Range spanned by X's
- Scatterplot matrix combines many scatterplots.
- Examples presented later in this topic.
Correlation Matrix

• Complementary summary
• Displays all pairwise correlations
• When interpreting, be wary of
 – Nonlinear relationships
 – Outliers
 – Influential observations

Residual Plots

• Used for similar assessment of assumptions
 – Model is “correct”
 – Errors are Normally distributed
 – Errors have constant variance
 – Errors are independent
• Plot e vs \hat{Y} (overall)
• Plot e vs X_j (with respect to X_j)
• Plot e vs non-included variable (e.g., X_jX_k)

Tests

• Univariate graphical summaries of e still preferred
• NORMAL option in UNIVARIATE test normality
• Modified Levene’s and Breusch-Pagan for constant variance
• Lack of fit test: But need repeat observations where all X fixed at same levels or can be comfortably grouped together….this hinders its applicability

Example I - Dwaine Studios (pg 236)

• Company that specializes in portraits of children. It has studios in 21 medium-sized cities nationwide and is considering expansion into other cities.
• Goal: To investigate whether sales are associated with certain characteristics of the city. If so, this could help in determining where to expand.
• Variables:
 – Annual sales (Y) - expressed in thousands of $\$\$
 – Persons aged 16 and younger (X_1) - expressed in thousands
 – Per capita disposable income (X_2) - expressed in thousands of $\$\$
Correlations

```sas
proc corr data=a1; 
    var young income sales; 

Pearson Correlation Coefficients, N = 21
    Prob > |r| under HO: Rho=0

young     income    sales
young     1.00000   0.78130   0.94455 <.0001 <.0001
income    0.78130   1.00000   0.83580 <.0001 <.0001
sales     0.94455   0.83580   1.00000 <.0001 <.0001
```
Example II - Predict Success?

- Goal: To find entry-level predictors of academic success
- Define academic success as high GPA after 3 semesters
- Predictors include
 - GPA after three semesters
 - HS math grades
 - HS science grades
 - HS english grades
 - SAT Math
 - SAT Verbal
- Data available on $n = 224$ students

Descriptive Statistics

- Using Proc MEANS or Proc UNIVARIATE

<table>
<thead>
<tr>
<th>Var</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpa</td>
<td>224</td>
<td>2.64</td>
<td>0.78</td>
</tr>
<tr>
<td>hsm</td>
<td>224</td>
<td>8.32</td>
<td>1.64</td>
</tr>
<tr>
<td>hss</td>
<td>224</td>
<td>8.09</td>
<td>1.70</td>
</tr>
<tr>
<td>hse</td>
<td>224</td>
<td>8.09</td>
<td>1.51</td>
</tr>
<tr>
<td>satm</td>
<td>224</td>
<td>595.29</td>
<td>86.40</td>
</tr>
<tr>
<td>satv</td>
<td>224</td>
<td>504.55</td>
<td>92.61</td>
</tr>
</tbody>
</table>
Correlations

[1] proc corr data=a1;
 var hsm hss hse;

 hsm hss hse
 hsm 1.00 0.57 0.44 <.0001 <.0001
 hss 0.57 1.00 0.57 <.0001 <.0001
 hse 0.44 0.57 1.00 <.0001 <.0001

[2] proc corr data=a1;
 var satm satv;
 satm satv
 satm 1.00 0.46 <.0001
 satv 0.46 1.00 <.0001

Regression Models

• Will now investigate:

 Model 1: GPA = HSM HSS HSE
 Model 2: GPA = HSM HSE
 Model 3: GPA = HSM
 Model 4: GPA = SATM SATV
 Model 5: GPA = HSM HSS HSE SATM SATV

• Should check residuals prior to any inference

Model 1

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>27.71233</td>
<td>9.23744</td>
<td>18.86</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>220</td>
<td>107.75046</td>
<td>0.48977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>223</td>
<td>135.46279</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.69984 R-Square 0.2046
Dependent Mean 2.63522 Adj R-Sq 0.1937
Coeff Var 26.55711

Parameter Estimates

| Variable | DF | Parameter | Standard | Estimate | Error | t Value | Pr > |t| |
|----------|----|-----------|----------|----------|-------|---------|-------|---|
| Intercept| 1 | 0.58988 | 0.29424 | 2.00 | 0.0462|
| hsm | 1 | 0.16857 | 0.03649 | 4.75 | <.0001|
| hss | 1 | 0.03432 | 0.03756 | 0.91 | 0.3619|
| hse | 1 | 0.04510 | 0.03870 | 1.17 | 0.2451|
Model 2

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>27.30349</td>
<td>13.65175</td>
<td>27.89</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>221</td>
<td>108.15930</td>
<td>0.48941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>223</td>
<td>135.46279</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE = 0.69958
R-Square = 0.2016
Dependent Mean = 2.63522
Coeff Var = 26.54718

Parameter Estimates

| Parameter | DF | Estimate | Error | t Value | Pr > |t| |
|-----------|----|----------|-------|---------|------|---|
| Intercept | 1 | 0.62423 | 0.29172| 2.14 | 0.0335|
| hsm | 1 | 0.18265 | 0.03196| 5.72 | <.0001|
| hse | 1 | 0.06067 | 0.03473| 1.75 | 0.0820|

Model 3

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>25.80989</td>
<td>25.80989</td>
<td>52.25</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>222</td>
<td>109.65290</td>
<td>0.49393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>223</td>
<td>135.46279</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE = 0.70280
R-Square = 0.1905
Dependent Mean = 2.63522
Coeff Var = 26.66958

Parameter Estimates

| Parameter | DF | Estimate | Error | t Value | Pr > |t| |
|-----------|----|----------|-------|---------|------|---|
| Intercept | 1 | 0.90768 | 0.24355| 3.73 | 0.0002|
| hsm | 1 | 0.20760 | 0.02872| 7.23 | <.0001|

Model 4

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>8.58384</td>
<td>4.29192</td>
<td>7.48</td>
<td>0.0007</td>
</tr>
<tr>
<td>Error</td>
<td>221</td>
<td>126.87895</td>
<td>0.57411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>223</td>
<td>135.46279</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE = 0.75770
R-Square = 0.0634
Dependent Mean = 2.63522
Coeff Var = 28.75287

Parameter Estimates

| Variable | DF | Estimate | Error | t Value | Pr > |t| |
|----------|----|----------|-------|---------|------|---|
| Intercept| 1 | 1.28868 | 0.37604| 3.43 | 0.0007|
| satm | 1 | 0.00228 | 0.00066291| 3.44 | 0.0007|
| satv | 1 | -0.00002456 | 0.00061847| -0.04 | 0.9684|

Model 5

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5</td>
<td>28.64364</td>
<td>5.72873</td>
<td>11.69</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>218</td>
<td>106.81914</td>
<td>0.49000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>223</td>
<td>135.46279</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE = 0.70000
R-Square = 0.2115
Dependent Mean = 2.63522
Coeff Var = 26.56311

Parameter Estimates

| Variable | DF | Estimate | Error | t Value | Pr > |t| |
|----------|----|----------|-------|---------|------|---|
| Intercept| 1 | 0.32672 | 0.40000| 0.82 | 0.4149|
| satm | 1 | 0.00094359| 0.00068566| 1.38 | 0.1702|
| satv | 1 | -0.00040785 | 0.00059189| -0.69 | 0.4915|
| hsm | 1 | 0.14596 | 0.03926| 3.72 | 0.0003|
| hss | 1 | 0.03591 | 0.03780| 0.95 | 0.3432|
| hse | 1 | 0.05529 | 0.03957| 1.40 | 0.1637|
General Linear Test

- Can use TEST statement in SAS
  ```
  proc reg data=a1;
  model gpa=satm satv hsm hss hse;
  sat: test satm, satv;
  hs: test hsm, hss, hse;
  ```

Test sat
 Results for Dep Var gpa
 Mean
 Source DF Square F Pr > F
 Num 2 0.46566 0.95 0.3882
 Den 218 0.49000

Test hs
 Results for Dep Var gpa
 Mean
 Source DF Square F P
 Num 3 6.68660 13.65 <.0001
 Den 218 0.49000

What’s the Best Model?

- Will discuss selection approaches in Chpts 8, 9, and 10
- Appears HSM only is best model
- Should also be looking at diagnostics

 - Important:
 - Look at variables one at a time
 - Look at all pairwise relationships
 - PLOT! PLOT! PLOT!

Model Fit Diagnostics

Key Results

- The relationship between Y and X_j depends on the other predictors in the model
- A predictor may be significant alone but not significant when other variables are in the model
- Similarly, coefficients and standard errors depend on the variables that are in the model
Background Reading

- KNNL Sections 6.8-6.9
- KNNL Sections 7.1-7.3