Topic 1 - Introduction

STAT 511
Professor Bruce Craig

Background Reading
Devore : Section 1.1

Outline

- Class Policies / Schedule
- Class Website
- Overview of Material
- Statistical Software

Class Website
www.stat.purdue.edu/~bacraig/stat511.html

- Course syllabus / Announcements
- Exam and homework schedule
- Lecture notes
- Homework assignments
- Data sets for class and homework
- Sample SAS programs
- Information about group projects

Class Policies

- Attendance
 - Not required but you are responsible for announcements and lecture material
 - If you have to leave early or arrive late, notify me in advance and sit near door
- Class participation encouraged
- Questions welcome at all times
Exams

- There will be two evening exams and a final
 - Must notify me early if scheduling conflict (set up alternate time)
 - Will be allowed one-page of notes and calculator
 - I will supply necessary tables
 - Each worth 20% of your grade

Homework

- Expect “weekly” homework assignments
 - Will be due Tues before class
 - Individual vs group effort
 - Worst grade will be dropped
 - Represents 25% of your grade
 - Answer key posted after due date

Project

- Group / Team projects
 - Teams determined after week 3
 - Will analyze more complicated data sets / perform simulations
 - Represents 15% of your grade
 - Check web site for upcoming details

Communication

- Office Hours
 - Mon 3:00-4:30
 - Thu 11:45-12:45
 - By appt.
 - By email - bacraig@stat.purdue.edu
Statistical Software

- Computer Software
 - Will use PC-SAS in class
 - Available on computer lab machines
 - Can get copy and put on home PC
 - Syntax Help / Examples available
 - Will provide template programs
 - Software Consulting Service (MATH G175)
 - Computer lab will be reserved M-R
 - Can use other programs at own risk

Overview

To learn a variety of ways to describe data; To understand the mathematical foundation of statistical inference for random samples; To conceptually understand the application of statistical methods such as hypothesis tests, regression, and ANOVA; To properly apply these methods to real world problems using statistical software and draw valid conclusions; To obtain the background necessary to study additional statistical methods in the future.

Schedule

- Descriptive Statistics (1.5 wks)
- Mathematical/Probabilistic Foundation (1.5 wks)
- Probability Distributions (2 wks)
- Sampling Distributions (2 wks)
- Statistical Inference (1 sample) (2 wks)
- Statistical Inference (2 samples) (1 wk)
- Analysis of Variance (1.5 wks)
- Linear Regression (1.5 wks)
- Categorical Data (2 wks)

What is Statistics?

- Science of learning from information (data)
 - Collection
 - Description
 - Interpretation

- Bombarded with statistics daily
 - Polls (e.g., Nielsen rating, popularity/opinion)
 - Sports (e.g., FT percentage, batting average)
 - Economic indicators (e.g., GNP, CPI)
 - Health (e.g., cohort studies, risk factors)
Why Statistics?

- Cannot escape interpretations of data
- Numerical literacy important to everyone
 - Express your conclusions numerically
 - Critically read and comprehend other results
 - Develop sound methods for trustworthy results
- Uncertainty exhibited in most processes
 - Different properties of "similar" material
 - Uncontrollable/controllable factors
 - Measurement/human error

Background Information

In addition to the data themselves, should also consider the science of problem

- **What purpose do the data have?**
 - Want to answer specific questions/hypotheses
 - Want to generalize results to population (polls)
- **What is the population of interest?**
 - Is the data set "representative" of population
 - How is the "representative" sample obtained
 - How many individuals in data set
- **What is the information?**
 - What variables are in the data set
 - What are the exact definitions of variables
 - What are the units of measure

Definitions

- **A data set** is a collection of observations
- Observations concern a set of **individuals**
- **Individuals** can be
 - People, objects, or animals
 - Experimental trials (under identical conditions)
- **Information** is organized as set of variables
- **Variable** is a characteristic of an individual
 - Person - Hair color, height, blood type
 - Object - Density, strength, concentration
 - Trial - H/T of coin flip
Definitions

- An **observation** is a realization of a variable.
 - Hair color → blond
 - Height → 62 inches

- **Univariate** data set consists of values from one variable

- **Multivariate** data set consists of values from more than one variable

Examples

- Will denote variables by upper case letters (X)
- Will denote observations by lower case letters (x)

The number of accidents on Interstate 65 in the month of December was 10

Individual = Interstate 65
Variable Y = the number of accidents in Dec
Observation $y = 10$

The following table (WSJ - 1997) summarizes a week’s beer advertising on TV

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Show (Network)</th>
<th>Date (Time)</th>
<th>% Viewers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coors Light</td>
<td>Hit List (BET)</td>
<td>Sept 2 (8:00 pm)</td>
<td>51</td>
</tr>
<tr>
<td>Molson</td>
<td>Singled Out (MTV)</td>
<td>Sept 2 (7:00 pm)</td>
<td>52</td>
</tr>
<tr>
<td>Molson Ice</td>
<td>Beavis and Butthead (MTV)</td>
<td>Sept 2 (11:30 pm)</td>
<td>48</td>
</tr>
<tr>
<td>Foster’s</td>
<td>Singled Out (MTV)</td>
<td>Sept 3 (11:00 pm)</td>
<td>46</td>
</tr>
<tr>
<td>Molson</td>
<td>Real World (MTV)</td>
<td>Sept 3 (8:30 pm)</td>
<td>45</td>
</tr>
<tr>
<td>Foster’s</td>
<td>Melrose Place (E!)</td>
<td>Sept 2 (7:00 pm)</td>
<td>41</td>
</tr>
<tr>
<td>Miller</td>
<td>Unreal (BET)</td>
<td>Sept 5 (8:00 pm)</td>
<td>65</td>
</tr>
<tr>
<td>Schlitz</td>
<td>Yo MTV (MTV)</td>
<td>Sept 5 (10:00 pm)</td>
<td>50</td>
</tr>
<tr>
<td>Molson</td>
<td>Beavis and Butthead (MTV)</td>
<td>Sept 6 (10:30 pm)</td>
<td>69</td>
</tr>
<tr>
<td>Budweiser</td>
<td>Video Music Awards (MTV)</td>
<td>Sept 7 (8:30 pm)</td>
<td>46</td>
</tr>
</tbody>
</table>

What are the variables and observations?

Inferential Statistics

- Study often focused on well-defined collection of indivs known as the **population**

- Cannot study entire population (census)

- Want to generalize **sample** to population

- Process of drawing conclusions about population is called **statistical inference**

- Conclusions valid only if sample considered representative of population
 - Representative : closely resembles population
 - When sample non-representative, results biased
 - Strive for an unbiased sample of population

Defining the Population

- Should be done prior to collecting sample

- Should always consider
 - How will individuals be selected?
 - What variables are of interest?

Example: Want to determine average level of radon in homes built on reclaimed land. Plan to select 50 homes and measure radon level. How to select homes?

 - Type of house?
 - Location of house?
 - Age of house?