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1. Introduction. In testing the fit of a sequence of observations
to a parametric family of distributions, it is commonly assumed that the
observations are independent and identically distributed (IID). In
practice, however, the observations may have substantial dependence,
as when the data are collected as a time series. Suppose, then, that
X]”"’Xn are observations on a (strictly) stationary stochastic
process (SSP) and that G is the common univariate df of the Xi' A
statistician who believes that the Xi are IID tests the hypothesis
that G is a member of a parametric family {F(-,8): 6 in @}, for @ an
open set in Euclidean m-space R™,  We will show that when GﬁF(-,eo)
for some eo, and the SSP satisfies a positive dependency condition,
chi-squared and empiric distribution function (EDF) tests reject the

true null hypothesis too often. That is, positive dependence is con-

founded with lack of fit. Since the class of tests for which this result

holds is very broad, including the Pearson, Kolmogorov-Smirnov, and
Cramer-von Mises tests with—the_parameter 0 estimated in general
ways, this confounding deserves recognition as a general phenomenon
1nbapp1y1ng omnibus tests of fit.

Chanda (1981) and, more generally, Moore (1982) have independently
studied the 1im1tfng distribution of chi-équared statistics when the
data are dependent, with emphasis on obtaining the form of the 1imiting
covariance matrix of the standardized cell frequencies. Moore
also proves the confounding of positive dependence with lack of fit
in one case, that of testing the fit of a general Gaussian SSP to
a specified normal distribution. The positivity condition that we

impose on the bivariate distributions of (Xi’xj) arises naturally

from consideration of ‘the covariance matrix.of cell frequencies when



the data form a SSP. We do not, however, make use of the detailed
form of the covariance’mafrix. ‘Some specific examples of such matrices
can be found in Moore (1982) and Chanda (1981).

Our procedure in this paper is to abstract and generalize three
essential steps from Moore (1982), which we now iﬁtroduce in turn. The
first two are asymptotic results. We will assume that these hold.

Our goal is to avoid detailed convergence arguments, but to establish
qualitative results about the Timiting behavior of tests of fit that

are true whenever appropriate asymptotics are available. The required

asymptotic results are in fact widely true.
First, we require that the estimator en=en(X],...,Xn) used to
estimate ¢ have an asymptotic expansion of central Timit theorem type

that is valid both for {Xi} IID and for the SSP in question. When
{Xi} is IID, many common estimators en have under F(-,eo) the repre-

sentation

(].]) n1/2(6 - 90) = n-"zzri]:.lg(x_i;"e) + Op(]),

where g has zero mean and finite covariance matrix. For example, this
is true in regular cases for maximum Tikelihood estimators‘(MLEs)

- and for Bayes estimators with respect to continuous priors. (See

e.g. Ibragimov and Has'minskii (1981), Chapters 1.8 and III.) In
many cases, enbcontinues to satisfy (1.1) with the same g when {Xi}

is a SSP. This assertioﬁ must be checked in each case, but typically
requires on]y}repeating the IID-case proof and employing a law of

large numbers for the SSP. Moore (1982) gives references for MLEs and



a prdof for minimum chi-squared estimators. Moreover, (1.1) can often
be obtained directly for specific estimators wifhout appealing to
results for general classes of estimators such as MLEs. Note that while
the asymptotic form of en is assumed the same for IID and SSP obser-
vations, the 1imiting behavior will usually differ due to dependence
among the g(Xi,eO)'s.

Second, we fequire the availability of an approbriate central
limit theorem for the SSP. In the chi-squared case, an ordinary

(multivariate) central limit theorem for sums Z?h(Xi) of functions of the

SSP is needed. The EDF case requires in addition a weak convergence
result for thé EDF process. Gastwirth and Rubin (1975) give theorems that
ensure that our results hold in many intéresting eXamp]es, e.g. when
{Xi}-is a Gaussian SSP with Z?lp(x],x1+i)[<m. Limit theorems for func-
tions of SSPs are an active field of research; progress in this area
will extend the class of processes for which our conclusions hold.
Third, we require a positivity condition on the bivariate distribu-
tions of‘(Xi,Xj). Section 2 discusses this condition, and places it
in the context of the considerable literature on positive dependence
of bivariate distributions. Useful equivalent conditions are obtained,
and it is noted that a number of exchangeable bivariate distributions

satisfy these conditions. 1In particular, our positivity condition is

equivalent to

(1.2) E{h(Xi)h(XJ.)} >0 for all h with Elh(Xi)h(XJ.)l <,



Readers willing to accept (1.2) as a positive dependency condition
without discussion may omit Section 2. Condition (1.2) is applied
to study the effect of positive dependence 6n the large sample behavior
of chi-squared statistics in Section 3,and of EDF statistics in
Section 4. Section 5 comments on the generality of our methods,
and applies them to severa] other tests of fit.

| Rinott and Pollak (1980) employ condition (1.2) for a sequence
of IID bivariate observations (Xj,Yi) to study the effect of positive
dependehce between X and Y on the asymptotic level of tests that X
and Y have equal marginal distributions. While their methods are
sihﬁ]ar to ours, their problem is quite different. And, és intuition
suggests, we reach opposite qualitative conclusions: tests of equal
marginal distributions for bivariate data are generally conservative
under positive dependence within bivariate observations, while tests
of fit have larger than nominal levels under positive dependence

across observations.

2. A positivity condition. Throughout this section, (X,Y)

will be an exchangeable bivariate r.v. with distribution function F.
Any pair of variables from a SSP are exchangeable. Here is the re-
quired positivity condition.

DEFINITION 2.1. Exchangeable r.v.'s (X,Y), or their distribution

F, are positive dependent on inteérvals (PDI) if for every integer

M>2 and every partition of (-=,») into intervals A ..»A, the MxM

1 M
matrix P with entries pij=P[X in Ai’ Y in Aj] is positive semidefinite
(psd).

Since (1.2) is the essential tool employed in Sections 3 and 4,

the following is the central fact about PDI .distributions.



THEOREM 2.1. (X,Y) are PDI if and only if E{h(X)h(Y)}>0 for all

measurable h such that E|h(X)h(Y)|<e.

PROOF. If h is a step function, we can write h=szi]i where 1,
“are the indicator functions of intervals Ai that partition the line.

Since then
E{h(X)h(Y)} = b'Pb

for b'=(b],...,b ), clearly (1.2) implies PDI.

m _
Suppose now that (X,Y) are PDI. If (1.2) can be established for
h with [h[<C, C constant, then truncating general h and employing the
dominated convergence thoerem Qi]] compiete the proof. Moreover,
if |h|<C, there exists a sequence of bounded simple functions hn
converging to h such that E{hn(X)hn(Y)} + E{h(X)h(Y)}. So (1.2) need
only be proved for simple functions h satisfying [h]<C.
For any such h and any ¢>0, there is a step function h* with
| P[h(X)#h*(X)J<e. This follows from the result (Halmos (1950), p.56)
that if u is a o-finite measure on a o-field & generated by a field
30, thén for any A in- 3 and n>0 there is a A* in 30 with p(AaA*)<n,
where AAA* is the symmetric difference. Here, take 30 to be all
finite unions of disjoint intervals, & the Borel sets on the line, and

u the distribution of X. PDI asserts that E{h*(X)h*(Y)}>0, and (1.2)

for h follows from this and
|[E{h(X)h(Y)} - E{h*(X)h*(Y)}]

= JECh(X)[A(Y) = h*(Y)T} + ECh*(Y)[h(X) - h*(X)T}| < 4C%. C



Shaked (1979) discusses the relations among several concepts of
positive dependence. He calls (X,Y) PDD if F is a positive semidefinite
distribution function, i.e., if the MxM matrix with entries F(ai,aj)
is psd for all a1<ay<...<ay and integers M>2. Shaked states (Propo-
sition 2.2) that PDD is equivalent to (1.2). However, his proof that
PDD implies (1.2) involves integrating E{h(X)h(Y)} by parts and therefore
requires that h be of bounded variation. We therefore outline a direct
proof of the fact that our condition PDI is equivalent to PDD. This
result places PDI in the context of the relations discussed by Shaked,
and with Theorem 2.1 establishes equivalence of PDD and (1.2).

THEOREM 2.2. (X,Y) are PDI if and only if they are PDD.

PROOF. For a7<...<ay, denote the matrix of F(ai,aj) by FM and
the column vector of F(ai,w)=F(w,ai) by fM. First notice that Fu
is psd for all a; and M if and only if FM'foﬁ’ the matrix: of
F(ai,aj)-F(ai,w)F(m,aj), is. The "if" assertion is obvious. To see
"only if", take ay=> and expand det(FM) by its last column to obtain
det(FM)=det(FM_]-fM_]fM_]). Since det(FM)zp, all of the (M-1)x{M-1)
upper left principal minors of FM-foM (for arbitrary aM) have nonnegative
determinant, and this MxM matrix is therefore psd. PDD is thus equi-
valent to Fy~fyfy psd for all M and a,-

On the other hand, PDI is immediately equivalent to Cov{h(X)h(Y)}>0
for all step functions h. But if h=2¥bi1i, where 1. is the indicator
of Ai=(ai-1’ai] and ~*=3)<@1<...<ay==, then

Covth(X)h(Y)} = x'(Fy ; - fM_lfﬁ-])x’



where x,=b.-b. ., i=1,...,M-1, and Fy.7 is formed from A - Ay q-
The theorem follows. [
REMARKS. (1) It is easy to see that (1.2) is equivalent to
Cov{h(X)h(Y)}>0 for all h for which the covariance exists. Shaked
(1979) and Rinott and Pollak (1980) use the condition in this form.
~ (2) PDI implies that the correlation p(X,Y)>0. For (X,Y) bivariate
normal, PDI is equivalent to o(X,Y)>0, but the equivalence does not
hold for all bivariate exchangeable distributions.
(3) If (X,Y) are conditionally IID, they are PDI. Moore (1982)
~established PDI for symmetric bivariate normal (X,Y) with p>0 in this
| way. Other distributions that are conditionally IID, and“hence PDI,
are listed with references by Shaked (1977), p.510; they include bivariate
exponential, F, logistic, and XZ distributions. The bivariate t
distributions are also in this class. Shaked (1979) shows that not
all PDD distributions are conditionally IID, and that the class of PDD
distributions is closed under convolution, mixture, and convergence in
distribution. The class of PDD (or PDI) distributions is thus extensive.
(4) Total positivity of order infinity (TP_) for F implies PDI, but the

bivariate t, for example, is PDI but not even TP2.

3. Chi-squared statistics. Observations X1,...,Xn are to be

tested for fit to the family {F(X,06): & in @}. Choose cells Ak=(ak-1’ak]’
k=1,...,M with boundaries =A< <. L<qyEe. Let ]k be the indicator
function of Ai» SO that the ith cell frequency is Nk=z?=1]k(xi)' The
corresponding cell probability is pk(e)=F(ak,e) - F(ak_],e). Let



Vn(e) be the M-vector of standardized cell] frequencies, having kth

component [Nk-npk(e)]/[npk(e)]% . Except in the simple null hypothesis
case Q={60}, the unknown parameter & is estimated by en=en(X],...,Xn).
Chi-squared statistics are psd quadratic forms in Vn(en). In particular,

the Pearson statistic is the sum of squares Vn(en)'vn(en).

Suppose now that X1,X2,... are‘a SSP, and that the common univariate
marginal distribution of the X; is F(-,eO) for some 8, in Q. Suppose
further that the estimator o satisfies (1.1) both when {Xi} is IID
F(-,eo) and for the SSP in question. Then Moore (1982) follows the
IID-case development of Moore and Spruill (1975) to show that

(3.1 (e, = a% I n(x,) + 0,(1).

Here h(x)=A(x)-Bg(x,eo); where B is the Mxm matrix with (i,3)th entry
1 1

pi'2 api/aej and A(x) is the M-vector with components [1k(x)-pk]/pk2 .

(When the argument 8 is omitted, 6=8,, is assumed.) Since E{h(Xi)}=0,

a central limit theorem applied to (3.1) will imply

v (8.) ¥ N(0,z)

(3.2)

o] n

2= lm o Covi)i_qh(X,)} < =.
Nsoo

Moore (1982) cites several app]icab]e*centra]vlimit theorems for SSPs,



and notes that (3.2) often continues to hold even when data-dependent
cells are employed. The limiting covariance matrix £ will of course

differ from 211D the Timiting covariance matrix of Vn(e ) in the

’n
IID case. Chanda (1981) and Moore (1982) derive the form of & for

several common estimators O Here is our main result on chi-squared

tests.

THEOREM 3.1. Suppose that X],Xz,... is a SSP such that (Xi’xj)

is PDI for all i#j, that X, has distribution function F(+,0,)s and
that (3.2) holds under F(-,eo) both for {Xi} IID and for the SSP

in question. Then if 211D is the limiting covariance matrix of

Vn(en) in the IID case, Z-Z11p is psd.

PROOF. Write

n
z=E{h(X])h(X1)'}+h‘m]— 7 Ci.os

e " §,5=1 1
i#J
where Cij=E{h(Xi)h(Xj)'}' The first term on the right is ZIID since
all Cij=0 in the IID case. Theorem 2.1 implies that all Cij are psd,
; ' - _vM .
since a Cija—E{f(Xi)f(Xj)} where f(x)—zlakhk(x), a, and hbeing the
ith components of the M-vectors a and h, respectively. Thus

Z-ZIID=;12 %’Zcij’ which exists and is finite by (3.2), i§ psd. L

General statistics of chi-squared type have the form Tn=Vn(8n)'NnVn(9n),
where wn is a (possibly data-dependent) psd MxM matrix converging in
F(-,eo)-probability as n»~ to a psd matrix w=w(eo). A number of useful
examples of such statistics, in addition to the Pearson case W=I,
are discussed in Moore and Spruill (1975) and Moore (1977). 1In all
these cases, the centering matrix W is the same in the limit for
{Xi} IID and for SSP‘s such that o, remains a consistent estimator of

8y- The limiting null distribution of Th is that of V'WV for VaN(0,z).
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This is the distribution of Z?Akzi, where the 7, are independent

N(0,1) r.v.'s and A are the characteristic roots of 147'Ja zw%. Theorem 3.1
implies that w% (X-EIID)W% is psd, and hence (Bellman (1960), p.115)
that xk(w% ZW% )z;k(w% ZIIDW% ), where Ak(H) denotes the kth largest
characteristic root of a matrix H. We have proved the following result.

COROLLARY 3.1. Suppose that the conditions of Theorem 3.1 hold,

and that Tn=Vn(en) ann(en) where wn has the same psd limit in proba-

bility in the IID and SSP cases. Then the limiting null distribution of

Tn in_the SSP case is stochastically larger than in the IID case.

In the 1im1t,'the test of fit with critical region Tn>c rejects at
least as often in the SSP case as in the IID case. This result applies
in particular to the Pearson statistic with o the minimum chi-squared
estimator (the Pearson-Fisher statistic) or with 8, the raw data maximum
likelihood estimator (the Chernoff-Lehmann statistic). These common
tests, when applied to SSP data by a naive user who believes the data
to be 11D, therefore reject too often whenever the SSP is positively
dependent in the PDI sense and is sufficiently regular to be covered
by a central 1imit theorem implying (3.3).

REMARKS. (1) The difference Ak(SSP)-Ak(IID) for some character-
istic values Ak’ and therefore the difference in test level, is strict
when £ and 211D have a common null space % and E_ZIID is positive
definite on %Y. Examination of the form of Z given by Moore (1982)
shows that this is usually the case. Moore also shows that for several
common Gaussian SSP's the characteristic values increase without bound,

and the test level approaches 1, as the positive dependence of the SSP
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increases. In fact, the machinery of Section 2 can be used to show that
the matrix Cij in the proof of Theorem 3.1 is monotone in the incidence
matrix Pij of Definition 2.1 for (Xi’xj)’ in the sense that Pg})-ng)
gg) psd. By a result of Rinott and Pollak (1980,

p. 194) it follows that the test Jevels in Moore's Gaussian 1-dependent

R (1)
psd implies Cij -C

and first order autoregressive examples are increasing functions of
the correlation p(Xi,Xi+]). The éonfounding of positive dependence
with 1ack of fit can therefore be arbitrarily serious in common cases.

(2) Corollary 3.1 is a general statement resulting from the assump-
tion that a]]r(Xi,Xj) are PDI. For somechi—squared tests based on M
cells, the conclusion of Corollary 3.1 can be obtained assuming only
that the incidence matrix P of Definition 2.1 is psd for partitions of
the line into exactly M intervals. This is done for the Pearson statistic
without estimated parameters in Theorem 3.1 of Moore (1982). A slight
modification of the argument given there applies as well to the Pearson-
Fisher statistic, Vn(en)'vn(en) with 8, the minimum chi-squared
estimator. The Pearson and Pearson-Fisher statistics are distinguished
by the fact that 211D is a projection matrix. We do not have a

direct proof requiring only PDI for fixed M in other cases covered

by Corollary 3.1, such as the Chernoff-Lehmann statistic.
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(3) Common IID-case chi-squared statistics employ centering
matrices wn(X],...,Xn) having the same 1imit W for quite general SSPs
{Xi}' By Corollary 3.1 and Remark 1, such statistics have different
Timiting laws for different degrees of dependence among the Xi’ It
is sometimes possible to choose wn to adjust for the dependence, and
obtain a statistic having the same distribution for, e.qg., any m-
dependent SSP. Moore (1982) gives an example of such a statistic. In
this example, wn involves sample estimators of the incidence matrices

Pij’ and does not have the same Timit in the IID and dependent-data

cases.

4. EDF statistics. The statistics considered in this section
afe functions Qf the EDF process with parameter ¢ estimated. Durbin
(1973) laid down the outline for the large-sample theory of such
statistics in the IID case. Neuhaus (1976) presents the theory in

-a manner very similar in outline and generality to the analogous

chi-squared theory of Moore and Spruill (1975). We will show, without

repeating details, that Neuhaus' development extends to suitable SSPs.
We remark first that a basic condition for the meaningfulness of
EDF statistics for testing fit of the univariate marginal of a SSP

XisX5.... is that the Glivenko-Cantelli result sup IFn(x)—F(x,e )|-0

1272 0
a.s. continuestg hold, where Fn is the EDF of X]""’Xn‘ This is
clearly true for {Xi} ergpdic; see e.g. Tucker (1959). Ergodicity
is strqnger than the condition stated by Moore (1982) for Nk/n+pk(eo),
which is required for meaningfulness of chi-squared tests. But ergodicity
is weak relative to the conditions known to-imply central 1imit theorems

for functions of {Xi}’ and carries with it the laws of Targe numbers

that are usually sufficient to verify (1.1) for $SPs in regular cases.

s
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Of course, we do not invoke ergodicity explicitly because of our strategy

of assuming that the required convergence results hold.

Suppose that X],Xz,... have common df F(-,eo). Define, following

Neuhaus,
F(-,0) = F(F'](-,eo),e)
V'i = F(Xi,eo)' i=1,2,... ,
and let ?ﬁ be the EDF of Vy,...,V . The EDF process is

— L —
Zn(t)=n2 [Fn(t) - F(t,ep)] for0<t<1, and takes values in the Skorohod

space D[0,1]. If F is suitably regular and en satisfies (1.1), Neuhaus'

arguments apply in the SSP case, and show that under F(-,eo)

Dl

(4.7) fh(t) =n"

1

It~—1
—

h(t.¥;) + o (1)

where E{h(t,Vi)}=0 and op(]) now means uniform convergence to zero in

probability over O<t<l. Here

h(t,V) = ]t(v) - F(t’eo) - E(Vaeo)lQ(t9eo) ?

where 1£ is the indicator funqtion of (~=,t], §(-;©v)=g(F'1(-,eo),eo)
with g the function in (1.1), and q(t,e) is the m-vector of deriva-
tives éF(s,e)/aek evaluated at s=F'](t,eO). The expression (4.1)
is analogous to (3.1), and similarly holds with the same function h
both for {Xi} IID and for SSPs whenever o, satisfies (1.1) in both
cases and F is sufficiently regular. |

A suitable central Timit theorem applied to (4.1) will imply
the analog of (3.2):
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"z‘n gfo in D[0,1], where 70 is a Gaussian process with

(4.2) a.s. continuous paths, zero mean, and covariance function

c(s,t) = Tim = Cov{21=]h(s,vi), )

lim PRLEAPIEES

Examination of the form of h(t,v) and of Neuhaus' proof of the weak
convergence 75 f}fb in the IID case (his Theorem 2.2) show that (4.2)
follows from:(a) A finite-dimensional central limit theorem for
Z?h(t,vi) that includes convergence of covariances in its conclusion;
and (b) A weak convergence result for the EDF process n% [Fﬁ(t)-?(t,eo)]

without parameter estimation. This separation occurs because the o,

enter h(t,Vi) only via the product of a function g of V. and a function
q of t that is the same for all n.

Since both (a) and (b) are known to hold for many SSPs, (4.2)
will often be true in the SSP case as well as in the IID case. For
example, Theorem 22.2 of Billingsley (1968), which has been considerably
exténded by later authors, implies (4.2) for certain ¢-mixing processes.
Since many common time series models are not q~mix1ng, more useful
results for our purposes are given by Gastwirth and Rubin (1975).
They establish (a) for all h having finite variance, and also (b),
for a class of mixing processes that includes all Gaussian SSPs with
Llo(Xy X 45) <o

THEOREM 4.1. Suppose that X],Xz,... is a SSP such that (Xi’xj)

is PDI for all i#j, that Xi has df F(-,eo), and that (4.2) holds under

F(-,eo) both for {X;} I1ID and for the SSP in question. Then if cIID(s,t)

is the covariance function of 7b in the IID case, c(s,t)-cIID(s,t)

is a psd function.

% T
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PROOF. Following the proof of Theorem 3.1, we need only show that

Cij(S,t) = E{h(ssv.l)h(t’vj)}

is psd, all i#j. For any function f on [0,1] for which the integra]

convérges absolutely,
11
ééf(S)f(t)cij(s,t)dsdt = Ethe(Vy)he(V,))

where hf(v)=;f(s)h(s,v)ds. Since (vi,vj) is PDI, this integral is
nonnegative. T

To obtain comparisons of asymptotic test levels for the SSP
and 11D case, we apply Theorem 4.1 together with a generalization by
Rinott and Pollak (1980) of a lemma of T.W. Anderson.

LEMMA 4.1. (Rinott and Pollak). Let Z],Z2 be Gaussian processes

in C[0,1] with zero means and covariance functions c](s,t), cz(s,t)

respectively, such that c2(s,t)-c](s,t) is a psd function. Then

P[Z] in A] 3_P[Z2 in A] for any closed, convex, symmetric set A in

cfo,1].

Taking AA={f in C[0,1]: A(f)<c} for A a continuous functional on
C[0,11, the large sample level of the test of fit with critical region
A(?h)>c will be greater in the SSP case than in the IID case whenever
AA is closed, convex, and symmetric and Theorem 4.1 applies. Note that
only continuity on C[0,1] (that is, under uniform convergence to a
continuous Timit) is required of A, since 7b is in C[0,1] a.s. and
A(?ﬁ)-ﬁ A(?b).follows from continuity a.s. with respect to the distribution

of ZO'

L
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The result above covers the Kotmogorov-Smirnov (kS) test, for which
A(f)=sup|f|. The Cramér-von Mises (CvM) statistic is not a fixed
functional of 76, but rather An(jh) where An(f)=ff2(t)dF(t,en). But
Neuhaus ((1976), p.76) shows that An(zﬁ) $ A(ZO), where
A(f)=ff2(t)d?(t,60), whenever 76 $ 76 in D[0,1] and
ff(t)d?(t,en) > ff(t)df(t,eo) in probability for all f in c[0,1].

The Tatter condition is satisfied under (1.1) and Neuhaus" regularity
conditions on F. Lemma 4.1 applied to AA now shows that the limiting
Tevel of the CvM critical regions An(Zh)>c is larger for SSP's satisfying
the conditions of Theorem 4.1 than for IID observations.

The Kolmogorov-Smirnov and Cramer-von Mises examples motivate, and
show two different ways of applying, our concluding result.

COROLLARY 4.1. Suppose that the conclusion of Theorem 4.1 holds

for a SSP {Xi} and that a test of fit of X]""’Xn has critical regions

Sn such that P[(X],...,Xn) in Sn] -> P[A(fb)>c], where A is a functional on

c{0,1] with AA={f: A(F) < ¢} c]osed,'convex, and symmetric. Then the

Timiting Tevel of the test is at least as large in the SSP case as in

the IID case.

REMARKS. (1) Normal cdf's satisfy Neuhaus' regu]érity conditions
and those needed to ensure that the MLE's (X,s) of the parameters (n,0)
satisfy (1.1). Moreover, for Gaussian processes PDI is.equivalent to
pkgo for k>1, where pk=p(X],X]+k). The convergence results of Gastwirth
and Rubin therefore ensure that Corollary 4.1 applies to any Gaussian
SSP {X;} with P20 and Zpk<w when (X,s) are used as estimators in

testing normality. This class includes the first-order autoregressive and
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all m-dependent Gaussian processes.

(2) Corollary 4.1 is designed to apply to critical regions of the
form {A(76)>c} or {An(iﬁ)>C}‘ EDF tests are sometimes employed with
critical regions of forms such as fA(fh)>Cn}’ where c,*C. When the
distribution function of A(?b) is continuous, the conclusion of the
corollary continues to apply.

(3) In addition to the usual KS and CvM statistics, Corollary 4.1
applies to weighted versions of these statistics, as well as to the
extensions of the CvM statistic discussed by Neuhaus (1973). The
treatment is similar to that of the CvM statistic above; the necessary
analysis can typically be found in the Titerature on IID-case convergence.

(4) In the CvM case, the Timiting null distribution is that of
Z:=1Ak2§, where the Z, are independent N(0,1) r.v.'s and A are the
characteristic roots of the covariance function c(s,t) considered as
an operator on an appropriate L2 space. (See Neuhaus (1979) for a
survey .) In this case, one can obtainkk(SSP)zAk(IID) as in the chi-
squared case. |

5. Other statistics. The method of proof used in this paper.

is both simple and quite general in applicability. Consider any

statistic of the form T = A(Un(en)), where o is an estimator of

, Un(e) is an asymptotically Gaussian random variable in a space S,

and A: S » [0,») is a continuous, convex, symmetric functional. The

0

limiting null distribution of Tn in the IID case is obtained by an

- analytic expansion, first of o, and then of Un(en), about the true

99> followed by abp]ication of a CLT on S to the dominant term of

the expansion. Thus Un(en) is asymptotﬁca]]y Gaussian for IID data.
Inspection typically revea1§ that for quite general SSPs, the estimator

o, remains consistent and therefore the same analytic expansion of
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Un(en) remains valid. Whenever a suitable CLT for SSPs on S exists,
Un(en) is therefore asymptotically Gaussian both for IID and for.
SSP data. The positive dependency condition (1.2) implies thét the
difference between the covariance functions for the SSP and 1D
cases is positive semidefinite. It then follows by Anderson's lemma
(see Tong (1980), p.55) or its generalization fo function space that
~the asymptotic null distribution of Tﬁ is stochastically larger for
SSP than for IID data. Thus any criticaT‘region {Tn > ¢} has asymp-
totic size at least as Targe for SSP as for IID data.

In Section 4 we applied this method with Un(en) = Z_ on
S = D[0,1]. "In the setting of Section 3, with Un(en)_= Vn(en)
on S = RM, Anderson's lemma for N(0,z) provides an alternate proof

of Corollary 3.1. There A(x) = x'Wx for positive semidefinite W.

~ Other possible choices for A when x = (x],...,xM) are A, (x) = mdx|xk[,

Ny

1
hp(x) = Z¥|xk[ anq r4(x) = ]Tngle=1xk|" Taking x, = n *(N.-np,),
which does not change the applicability of our method, A, generates
a statistic of Hoeffding equivalent to David's empty cell statistic,
and Mg generates a KS statistic for discrete or grouped data. Both
of these statistics, particularly the latter, are discussed by Pettitt
and Stephens (1977). |

The confounding of positive dependence with lack of fit holds for
tests based on convex, symmetric functionals of other asymptotically
Gaussian quantities as well, provided only that the technical task
of establishing the required CLT for the SSP case is successful.

Candidates include tests of fit based on the quantile prdcess and on
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spacings, for which Shorack (1972) establishes convergence to
Gaussian processes invthe IID case. In addition, some common test
statistics have analytic expansions showing that under the null
hypothesis they are asymptotically equivalent for both IID and SSP
data to statistics of the classes treated here. Inspection of the
analysis shows that our qualitative conclusion applies. For examp]e,
this is true of the Tog Tikelihood ratio statistic for grouped data
because of its analytic relation to the Pearson statistic.” Cressie
and Read (1982) have proposed a family of statistics asymptotically
équiva]ent to the Pearson statistic. This family includes the log
likelihood ratio, Neyman modified chi-squared, and Freeman-Tukey
statistics. Their analysis combined with our method shows that

Corollary 3.1 holds for the éntire class.



REFERENCES

Bellman, R. (1960). Introduction to Matrix Analysis. McGraw-Hill,
New York.

Billingsley, P. (1968). Convergence of Probability Measures. Wiley,
New York.

Chanda, K.C. (1981). Chi-square goodness-of-fit tests based on
dependent observations. In C. Taillie et. al. (Eds.), Statistical
Distributions in Scientific Work é 35-49, D. Reidel, .Dordrecht,
NetherTands.

Cressie, N. and Read, T.R.C. (1982). Mu]tinomié] goodness-of-fit
tests. To appear. :

Durbin, J. (1973). Weak convergence of the sample distribution function
when parameters are estimated. Ann. Statist. l 279-290.

Gastwirth, J.L. and Rubin, H. (1975). The asymptotic distribution theory

of the empiric c.d.f. for mixing processes. Ann. Statist. 3
809-824.

Halmos, P.R. (1950). Measure Theory. Van Nostrand, New York.

Ibragimov, I.A. and Has'minskii, R.Z. (1981). Statistical Estimation,
Asymptotic Theory (trans. S. Kotz). Springer, New York.

Moore, D.S. (1977). Generalized inverses, Wald's method, and the con-
Struction of chi-squared tests of fit. Jour. Amer. Statist. Assoc.
Zg 131-137.

Moore, D.S. (1982). The effect of dependence on chi-squared tests of
fit. Ann. Statist. 10 to appear.

Moore, D.S. and Spruill, M.C. (1975). Unified large-sample theory of
general chi-squared statistics for tests of fit. Ann. Statist.
3 599-616.
n

Neuhaus, G. (1973). Zur Verteilungskonvergenz einiger Varianten der
Cramér-von Mises - Statistik. Math. Operationsforsch. u. Statist.
4 473-484. -

Neuhaus, G. (1976). Weak convergence under contiguous alternatives
of the empirical process when parameters are estimated: The Dk

approach. Lecture Notes in Mathematics QQQ 68-82. Springer, New York.

Neuhaus, G. (1979). Asymptotic theory of goodness of fit tests when
parameters are present: A survey. Math. Operationsforsch.
Statist., Ser. Statist. lg 479-497. '




Pettitt, A.N. and Stephens, M.A. (1977). The Kolmogorov-Smirnov
goodness-of-fit statistic with discrete and grouped data. Tech-
nometrics lg 205-210.

Rinott, J. and Po]]ak3 M. (1980). A stochastic ordering induced by
a concept of positive dependence and monotonicity of asymptotic
test sizes. Ann. Statist. 8 190-198.

Shaked, M. (1977). A concept of positive dependence for exchangeable
random variables. Ann. Statist. 2 505-515.

Shaked, M. (1979). Sone concepts of positive dependence for bivariate
interchangeable distributions. .Ann. Inst. Statist. Math. %l 67-84.

Shorack, G.R. (1972). Convergence of quantile and spacings processes
with applications. ‘Ann. Math. Statist. &% 1400-1411.

Tong, Y.L. (1980). Probability Inequalities in Multivariate Distri-
butions. Academic Press, New York.

Tucker, H.G. (1959). A generalization of the Glivenko-Cantelli
Theorem. Ann. Math. Statist. 30 828-830.




