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1. INTRODUCTION

We observe independent and identically distributed random variables

XI,XZ,... and wish to test the fit of these data to a parametric family
of distribution functions F(xle), where 6 ranges over an open set { in

R". Chi-square tests of fit are based on the observed frequencies Nno of

Xl,...,Xn falling in cells Eo’ g=1,...,M. The cell probabilities are

p (8) = [ dF(x]e).
E
g

The unknown parameter 6 must be estimated by en = Gn(Xl,...,X ). If

n

vn(e) is the M-vector of standardized cell frequencies having oth component

[N _ - np_(0)1/[np (8)1%/2, ‘ (1.1)

and én is the minimum_chi-square estimator of 6, the Pearson chi-square
statistic is Vn(éh)'vn(én)' (A11 vectors are column vectors and prime
denotes transposition.)

Under appropriate regularity conditions (see Cramer [4], section
30.3, or for stronger results Moore and Spruill [12]), the limiting null
distribution of Pearson's statistic is xz(M—m—l). It is often desirable
to use estimators en such as the maximum likelihood estimator (MLE)

A

en = en(xl,...,xn) which are not asymptotically equivalent to én' In the

case of an, Chernoff and Lehmann [2] showed that the limiting null distri-

bution of the Pearson statistic
~ ~
Vn(en) Vn(en)

is not chi-square and in fact depends on the unknown true value eo,of 0.

This dependence on 8, can be eliminated when F(x|6) is a location-scale

0

family by the use of appropriate random cells, that is, cells whose



boundaries are functions of XyoeeanXo (Watson [19], Moore [11]). The
limiting null distribution is still not chi-square and varies with the
hypothesized F(x|6), but tables are available for the case of testing for
univariate normality (Moore [11], section 4, and especially Dahiya and
Gurland [5]).

An alternative approach, suited to general estimétors en and general
families F(x|6), is to abandon the Pearson sum of squares in favor of a

more general quadratic form in the standardized cell frequencies,

v,(e.)'QVv (6}, (1.2)

where Qn = Qn(xl""’xn) is an MxM matrix. Kambhampati [9] discovered

the appropriate Qn such that when the MLE én is used, the statistic (1.2)
has the xz(M-l) limiting null distribution. The same result was also found
in the location-scale case by Nikulin [13]. A general large-sample theory
of the statistics (1.2) appears in Moore and Spruill [12]. That theory
allows multivariate Xi’ quite general en, random cells, and not necessarily
continuous F(xle), and studies the limiting distribution of (1.2) under

the null hypothesis and under sequences of local alternatives.

In this paper we consider the related problem of cohstructing statistics
of form (1.2) (by choosing the matrix Qn) which have a chi-square limiting
null distribution. This problem has a relatively simplé solution based on
the-use of g-inverses in '""Wald's method" of conétructiﬁg tests from asymptoti-:
cally normal estimators. Section 2 discusses Wald's method for estimators
which are asymptotically singular multivariate normal. Section 3 applies
this method to construct goodness of fit statistics having the xz(M—l)

limiting null distribution. The general recipe is given in Theorenm 4,



The work of Kambhampéti [9] and Nikulin [13] for the case of MLE's and
of Hsuan [8] for method of moments estimators are special cases of this
result. Derivation of their statistics is greatly simplified by the use
of Wald's method as extended in Section 2. Section'4-concerns the non-
central theory of the statistics constructed in Séction_S. These results
are not essential to the construction of chi-square tests and may be
omitted if desired. Section 5 gives two ekamples of applications of the
method.

Standard notation is used for convergence in law and in probability.
The p-variate normal distribution is denoted by Np(u,25 and the central
and noncentral chi-square distributions by xz(k) and xz(k,d). Finally,

M(A) denotes the range (column space) of the matrix A.

2. WALD'S METHOD GENERALIZED
Wald's method is the name given'to a standard procedure for construct-
ing a sequence of test statistics having a XZ limiting null distribution
from a sequence of estimators having a nonsingular multivariate normal
limiting distribution. In simplest form, the method is as follows.‘ Suppose
that {tn} is a sequence of estimators of a p-dimensional parameter t such

that when 1 = Ty

1/2
L (e -t » NS0, ]) (2.1)
where ) (which may depend on TO) has full rank, rank(}) = p. Then if )
n
is a consistent sequence of estimators of z, i.e., if plimz = Z when
n

T = T4, it follows that

-1 7
Lt 1] )] > X ).
n

Wald [18] applied this procedure when‘tn is the MLE from a samble of size n,

M*’w



and it has-been frequently used since. Stroud [17] has recéntly given an
exposition and some examples. Wald's method is simply the application to
asymptotic theory of the fact that if X is Np(u,Z) and z is nonsingular,
then the quadratic form (X—u)'z—l (X-1u) has the xz(p) distribution.

It often happens that (2.1) holds, but that Z is singular. This is
true, for example, when T is the vector of cell probabilit;es and t, the
vector of observed relative frequenéies in a multinomial problem. In this
case it is still possible to give general procedures for constructing
sequences of test statistics having a chi-square limiting null distribution
by applying the distribution theory of quadratic forms of general multi-
variate normal distributions. This theory is now well developed (see in
particular Chapter 9 of Rao and Mitra [14]). Two specific results are the
following.

Lemma 1: Suppose that X v NP(O,Z) with raﬁk (Z) = k.

(a) If B is an m*p matrix such that V = BZB' satisfies rank (V) = k,
and if Y = BX, then the quadratic form Y'V'Y is invariant under
choice of B and V;. In particular, X'Z'X is invariant under
choice of ). |

(b) For symmetric pxp matrices A, X'AX v xz(k) if and only if A is
a g-inverse of ).

Lémma 2: Suppose that X n Np(u,Z) with rank (Z) = k and that uEEJf(Z).
Then

(a) X')'X is invariant under choice of } .

(b) X'Z-X " xz(k,é) with noncentrality parameter & = u'y u.

Lemma 1(b) appears in Khatri [10], while Lemma 2(b) appears on page 173
of Rao and Mitra [14]. That all choices of g-inverse give the same quadratic

form (not just forms having the same distribution) is known (see page 615 of



Rao and Mitra [15]) but deserves more attention. In particular, Lemma 1
says that there is a unique quédratic form in X having the xz(k) distri-
bution, even if we work with any linear transformation of X which does not
destroy information in the sense of reducing the rank of the covariance
matrix. Note that in the setting of Lemma 1, quadratic forms X'AX for A
not a g-inverée of Z may have the xz(r) distribufion for r < k. In the

. setting of Lemma 2, X'} X need not bé either invariant or distributed as
X2 unless pE.l(Z)

It is natural to use g-inverses to construct statistics having chi-
square limiting null distributions from estimators having singular multi-
variate normal limiting distributions. There follow two formulations of
Wald's method for singular distributions. We are given estimators t of

t such that when T = Tgs

L2 e -t )] > N 0,])

. -1/2
and under the sequence of alternatives L P un / for Hy U,

L e ] > N D).

Here ) may depend on T, and rank () = k.
Theorem 1: Suppose that plim Zn = ) when T = T, and that tn-TOGE”c(zn)'
for all n. Then
(a) Tn = nﬁtn—ro)'z_ (tn—ro) is invariant under éhoice of 2;
(®) When T = 7, LIT ] > x* (k).
If in addition plim Zn = Z under the sequence T and u EEJITE), then

() Under T, T ] > x20u'ITw).

e



Proof: tn-rogg Jf(zn) ensures that (a) is true, so that Tn is well-defined.
Attention may now be restricted to any particular choice of Z;. The Moore-
Penrose inverse A’ of a matrix A is unique and has the property that its

entries are continuous functions of the entries of A. Therefore
T =n(t_-t)'), (t.-t,)
n n O n n 0

is a continuous function of the components of tn and of Xn. Parts (b)
and (c) now follow from the lemmas.

Theorem 1 requires that tn—ro e;,‘TZn) for each n, a éondition which
may be hard to check. An alternative approach is to choose a particular
g-inverse of the limiting covariance matrix } and consistently estimate
this g-inverse, rather than inverting consistent estimators of X.

Theorem 2: Suppose that B is a g-inverse of z. 1f Bn are random matrices

such that plim Bn = B when t = then when t = 1

TO’ 0,
(@ Ln(t ~1p)'B (t 7)1 > ().

If in addition plim Bn = B under the sequence T and E;Jt(l), then under Ty
- ) .
(b) y[n(tn-TO)'Bn(tn—.TO)] + X US:u z u-
Theorems 1 and 2 are of interest in their own right, though in this

paper they are applied only to the construction of tests of fit.

3. CONSTRUCTION OF CHI-SQUARE STATISTICS
In constructing statistics of the form (1.2) which have a chi—squafe
limiting null distribution, we build on the discussion of the large sample
behavior of Vn(en) presented in Moore and Spruill [12]. One of the
qualitative conclusions of that paper is that if all cells are rectangles

with sides parallel to the coordinate axes and if random cells are used

with vertices which converge in probability to the corresponding vertices

of a set of fixed cells as n increases, the limiting distribution of




paper we can therefore assume without loss of generality that fixed cells
are used in the statistic (1.2).

The estimators 6, are assumed to have the large-sample form

: n
nl/z(en-eoj = nfl/z ) h(Xy) + (3.1)

i=1
“when 6 = 60. Here h(x) is an R™-valued function satisfying E[h(x)leo] =
and E[h(X)h(X)'|éO] = L, a finite matrix,; and plim r = 0. Most common
estimators, including minimum chi-square, maximum likelihood and ﬁethod
of moments estimators, have the form (3.1) in regular cases. Since (3.1)
also holds in many nonregular cases, it is best to simply state it as the
assumed asymptétic form of.en.

From this point, thé argument 6 will pe omitted in all functions,
expected values and derivatiQes when 6 =8 . We have already used this

0

convention in ignoring the dependence on 90 of h in (3.1). Let us define

and B as the Mxm matrix with (i,j)th entry

_172 %P4
i 59, °
j

If Xg is the indicator function of the oth cell E0 and W(x) the M-vector
' 1/2

with oth component [xG(X)-Po]/PU

we define the MxM matrix

) = I, - 9a' + BLB' - BE[hR(X)W(X)']
+ E[WQX)h(X)']B! (3.2)
Theorem 3: (Moore and Spruill [12]) If en satisfy (3.1), if po(e) is
continuously differentiable at 6 =_90, Py > 1 for all o, Zpo = 1,’and if

F(xleo) is continuous at each vertex of the cells Eo,,then under 60

0



LIV, (601 ~ Ny(0,]). | (3.3)

Wald's method as generalized in Section 2 can now be applied to

Vn(en) based on (3.3). If C is defined by writing (3.2) as

z = I-qq'-C,

then it is a staple fact of chi-square calculations that qq' is a pro-
jection of rank 1 orthogonal to B and hence to C. There are two cases
of interest.

Case 1. 1f en are the minimum leestimators én’ then C = B(B'B)-IB‘
and Z,qq',C are orthogonal projections of ranks M-m-1, 1 and m respectively.
In this case ) = Iy and the Wald's method statistic is of course the

Pearson chi-square statistic. Theorem 2(a) applies with
1/2 _ 5
n (tn_TO) = vn(en).

Case 2. Suppose'that rank (Z) = M-1. This holds for most estimators
other than minimum chi-squaré éstimators. For example, if o, is the MLE
8n and J is the information matrix of F(xleo), then ) has rank M-1 if the
matrix J-B'B, which is always nonnegative definite, is positive definite.
Thus Z has rank M-1 unless the raw data contain no more information than
the cell frequencies. Similarly, when en are method of moments estimators
of a general class studied in the chi-square test context by Hsuan [8];
remark 3 on page 12 of [8] states in effect that rank (z) = M-1 unless there
is a pathological connection between estimators and cells.

If rank (Z) = M-1, then since qq' is a projection orthogonal to Z, it
“ follows at once that rank (I-C) = M and that (I—C)_1 is a g-inverse of Z.
Now the natural estimator of Z is zn defined by replacing B = B(GO) by

B(en) and P, = po(eo) by pa(en) in (3.2). 1If Cn is the corresponding

?



version of C, then just the same argument shows that rank (I-Cn) = M and
- -1
{n = (I-C)) 7.

{aERM: a.
i

What is more, z and zn both have as their range the set

-1/2 _ . _
- x;p; (8) and lei = 0} with 6 = 6, or 6 . So V (6) € Jt(zn)
for all n. Theorem 1 therefore gives the following general result.

Theorem 4: Suppose that (3.3) holds with rank (Z) = M-1. Then the Wald's

method statistic

Tl’l - vn(en) 'zn Vn(en)

is invariant under choice of Z;, can be calculated as

, -1
T =V (8)'(I-C) 'V (8), (3.5)

and satisfies
5([Tn] -+ xz(M-l) when Ho is true.

Expression (3.5) is the recipe for constructing a.quadratic form in
the standardized-cell frequencies which has the XZ(M—I) limiting null
distribution. The recipe is unique éxcept for terms which approach 0 in
probability as ﬂ + =, The ease of applying the recipe in a particular

case depends on the particular form of the matrix C.

4. BEHAVIOR UNDER LOCAL ALTERNATIVES
In order to discuss alternative as well as null distributions, it
is necessary to generalize the model used in Sections 1 and 3. Suppose

therefore that X ..,Xn are a random sample from F(x |9, n) where 6 € &, a
L4 .

1’
subset of Rm, and n ranges over a neighborhood of a point i in RP. We

write

F(x|8,ny) = F(x|e)

so that the null hypothesis that the Xi have a distribution in the family
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F(xle) becomes
Hy: n = n,.
The sequence of local alternatives is

H:n=n =nq+ Yn—l/2

for a fixed vy in rP.
‘The assumption (3.1) concerning the asymptotic form of en is now
generalized to: when (eo,nn) holds,

n .

-1/2 21 hXj,n) + Ay + 1. (4.1)

1/2 _
n (en-eo) =n ;

Here A is an mxp matrix, and h satisfies

E(h(X,m) [ (8y,m] = 0

E[h(X,Mh(X,m)"[(8,,M] = L(M)

where L(n) is an mxm matrix defined for n in a neighbdrhood of i and

L(n) ~» L(no) =Lasn-—>n Just as the argument ® is omitted when 6 = 90,

0
the argument n is hencgforth omitted when n = Ny It is shown in Durbin
[6] and in section 2 of [12] that most common estimators satisfy (4.1).
For general (6,n) we have cell probabilities po(e,n) and the vector
Vn(B,n) of standardized cell frequencies. Tests for'H0 are of course

based on Vn(ﬂn),lthat is, on Vn(en,no). Define the Mxp matrix B12 with

(i,j)th entry

po1/2 o4
i an,
J
and the M-vector
u= (B,, - BA)Y.

12
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Additional technical assumptions are needed to derive the limiting
alternative distribution of Vn(en). These can be found in [12] and will
not be restated here.
Theorem 5: (Moore and Spruill [12]) If en satisfies (4.1), the assumptions
of Theorem 3 hold, and other regularity conditions are met, then under
(eo,nn)

LIV, (6.)] + Ny, ]). | (4.2)

Theorem 5 in combination with Theorems 1(c) and 2(b) establishes
i
the limiting alternative distributions of the statistics discussed in

Section 3. 1In the case of the Pearson chi-square,

A

-1
] 1
(B'B)™" B'B,

h (B'B)_IB'W

(the derivation is sketched in section 2 of [12]), and calculation shows that

_ -1
w=[I, - B(B'B) 'B']B Y

so that in régular cases the limiting alternative distribution is
xz(M—m-l,IIullz) by Theorem 2(b).

In the common rank‘(Z) = M-1 case, Theorem 1(c) applies and
establishes the following supplement to Theorem 4. Notevthat since
qq'v = 0, u € #(}) as required in this case.
Theorem 6: Sdppose that (4.2) holds with rank (Z) = M-1. Then under the

sequence of alternatives (60,nn)
2 P |
LIT] > x"M-1,u" (1-0) 7 w). S (4.3)

The result (4.3) in principle allows the comparison of statistics Tﬁ based

on different choices of 6, When p=1 the ratio of noncentrality parameters
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is the Pitman efficiency (Hannan [7]). For p > 1, this depends on the
direction y from which n, approach Nys SO Bickel [1] recommends an approach
based on generalized variances. This may be useful in specific problems,
but no general‘optimaiity results seem available. The natural candidate,
6n’ produces a statistic with M-m-1 degrees of freedom rather than M-1.
Moore and Spruill, in Section 7 of [12], follow Chibisov [3] in showing
that the Pearson chi-square statistic may be either better or worse against

local alternatives than the statistic Tn with MLE's 6n'

‘5. EXAMPLES OF CONSTRUCTION OF STATISTICS
Example 1: Suppose that 6 is estimated by the MLE en. Define J to

be the information matrix of F(xle) at 60,

9 lo 9 log f

J"E[( )( )],

where f is the density of F and we use the convention that 3%-15 the

m-vector of derivatives with respect to the components of 6. Then in
regular cases (and also in many nonregular cases) en satisfies (3.1) and

(3.3) with

-1 93 log £
a6

I -qq' - BJ B,

h=1J

[
1}

) has rank M-1 except in the pathological case in which J-B'B is not
positive definite. Thus Theorem 4 gives as the statistic having the

xz(M-l) limiting null distribution

=V, (6 2’ Qe )V, (6 ) (5.1)

n n-n

where

Qo) = [T, - B(6)3 ' (0)B{0) 17"

g
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T, was obtained in a less direct fashion and in a different but equivalent
algebraic form by Kambhampati [9].

For testing'fit.to F(xle) when én cannot be explicitly obtained, one
has the choice of (i)} finding én numerically and using the Pearson statistic;
(ii) inverting Q(én) and using Tn; (iii) for location—séale families F(xle),
using 5n in the Pearson statistic with appropriate random cells, if tables
for the non—x2 limiting null distribution are available. Spruill [161 has
shown that in terms of approximate Bahadur efficiency, (ii) is always
preferable to (iii), while no uniform dominance exists between (i) and (ii).

The alternative distribution of Tn follows easily from Theorem 6. In

most cases én satisfies (4.1) and (4.2) with

hix,n) = J1 9 log £

26
(89>™
= g1 '
A=1J J12 |
_ -1
W= By - BT Iy
where J12 is mxp,
_ 9 log f, 9 log f,'

In such cases the limiting distribution of Tn under (eo,nn) is xz(M-l,u'Qu).
Another expression for the noncentrality parameter is given in Theorem 5.1
of [12], where the distributions are derived by more complicated arguméhts
not involving g—inverses.

Example 2: It is desired to test fit to the family of densities
£(x|6) = F(1+6x) 1<x<1

where @ = (-1,1). This family has been used as a model for the cosine

of the scattering angle in some beam - scattering experiments in physics.
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Cells Eo = (ao-l’ ao] are used, with
-1 =a, <a <...<aM =1,

0 1

In this case neither én nor én can be expressed in closed form, but

since ESX = 6/3 a natural consistent and unbiased estimator of 8 is

Gn = 3Xn. This estimator satisfies (3.1) with
h{x) = 3x - 60
2
L=3- 6,

and the resulting z has rank M-1 since Sn is a method of moments estimator

satisfying the condition (h not constant on each Eo) of Hsuan [8]. Thus
-1
'(I-
Vn(en) (1 Cn) vn(en) (5.2)

has the xz(M—l) limiting null distribution, where Cn = C(eh) and‘calculatjon
shows that C(6) has (i,j)th component

2
172 ,0%49 2 2 .2 2
) D (2 - 25 (@] - a5y

(pipj

-7 @] - 8l D (ajmayp) + (ap-ay ) (ai-a2_p1)

As an alternative to numerical calculation of 6n and using the Pearsbn
statistic with xz(M-Z) tables, one can numerically invert I—Cn and use .
(5.2) with xz(M—lj tables. The MLE én cannot be used‘in the Pearson
statistic, since f(xle) is not a location-scale family and hence even with
random cells the limiting null distribution of Vn(én)'vn(én) depends on

the true eoxand is known only to lie between XZ(M—I) and xz(M—Z).
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