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SUMMARY
The limiting distribution of the chi-square goodness of fit statistic with
parameters estimated is not effected by the use of cells which are functions of
the observations, Whether the parameters are estimated from grouped or ungrouped
~data. More precise statements of these results are found in Watson (1959). Un-
fortunately, rigdroqs proofs are tedious and have been given only for univariate
observations. We show here that modern weak convergence methods greatly simplify

the proofs and extend the results to rectangular cells in any number of dimensions.

1. INTRODUCTION

The theory of ésymptotic distributions of chi-square goodness-of-fit statis-
tics based on a fixed number of cells for univariate observations is quite well
known. If one uses M cells and estimates m parameters by means of maximum like-
lihood estimators based on the grouped data, the asymptotic distribution under
the null hypothesis is Xﬁ-m—i (Cramer (1946), section 30{3); If the parameters
are estimated by maximum likelihood or other asymptotically efficient means from
the ungrouped data;>Chernoff and Lehmann (1954) showed that.the asymptotic dis-

tribution is not chi-square. It is rather the law of a random variable of the

form



(1) | boz2 . ) az?

where the Zi are independent standard normal and the constants Ai lie between
0 and 1. |

These results are derived from the multinomial distribution and are there-
fore independent of the dimension of the observations. It is, however, often
desirable not to use fixed cell boundaries, which are assumed by the results
above. For example, in testing goodness of fit to the normal family N(u,oz) with
both parameters unknown a statistician may wish to use cell boundaries of the form
X + a.s. Here X and 52 are the sample mean and variance and the constants a; would
typically be chosén as the boundaries of equiprobable cells in the N(0,1) case.
Work of A.R. Roy'(1956) and G.S. Watson (1958), (1959) shows that in the case of
univariate observations we can say generally that use of cell boundaries which are
functions of asymptotically efficient estimators of unknown parameters does not ef-
fect the asymptotic distribution of the chi-square statistic under the null hypoth-
esis.

To be more precise, suppose that én is an asymptotically efficient sequence
of estimators for Ql(both 6n and @ may be vectors) based on a random sample Xl""’

Xn. We choose cell boundaries to be smooth functions of Gn. Let Ni’ i=1,...,M

Be the number of‘Xl,....,Xn falling in the ith cell. Since the cell boundaries are
functions of 6n’ the cell probabilities under the null hypothesis are functions
pi(Qo,én), where 90 is the true parameter value. Now sﬁppose we ignore the random
nature of the cells and proceed as usual to compute a chi-square statistic. There
are two cases. -If, following Chernoff and Lehmann, we estimate 90 at this stage

by én’ the chi-square statistic is
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Under suitable regularity conditions, the law of Tn again approaches the law of
(1). However, if we choose to estimate’e0 from the grouped data as in the standard

case, we obtain estimators 6; by solving the equations

M . N. 5

(2) N L
i=1p.(0,0) %

P;(050.) =0 j=1,...,m

for 6. Here Qj is the jth component of the m-dimensional parameter 6. Note that
(2) are just the_usual equations for the maximum likelihood estimators from grouped
data (Cramer (1946), equation 30,3,3a), ignoring the presence of the random Qn. The

chi-square statistic is now

S =
n
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Watson (1959),.Séction 4, observed that 55 have the same'asymptotic behavior as the
corresponding estimators from fixed cells and hence that the law of Sn under the
null hypothesis approaches Xﬁ—m—l just as in the fixed cell case.

The proof of these results depends at a crucial point on the assumption that
Xl,...,Xn are univariate. The proof is also quite long, being given in full only
in Roy's unpublishéd thesis. It is now possible, by using modern tools for weak
convergence of processes, to greatly simplify the univariate proof and to extend
it to the general case of k-variate observations. This wés done for Tn by the
author in Moore -(1970). The present paper seeks to simplify the method and ob-

serve that it applies equally to Sn' It may be read as a supplement to section 4



of the excellent survey paper of Watson (1959).

2. BASIC RESULTS

Let Xl,...,Xn be a random sample from a k-variate distribution function
F(x|9) having density f(xle) which is continuous in both variables and contin-
uvously differentiable in 8. Here 9'=(91,...,9m). (Ve;tors are assumed to be
column vectors, with prime denoting transpose.) We partition k;space by rec-

tangular cells formed by partitioning the xi—axis by

o =g (8)< £ (0) < .. gy (0) = o

where each gij(e) is continuously differentiable in 8. There are M = H?:l vy
cells in the resulting partition, which we index 1 to M in an arbitrary manner.
The probability pi(Q,én) that an observation on F(xle) falls in the ith cell
can be expressed by a familiar difference operator applied to F(x[Q) (see
Cramer (1946), 8.3.3, for example.) We define this operator by writing

A

. 0
p,(0,8) = A7 F(x|6)

so that the superscript denotes the value 5 at which the partitioning functions
gij(é) are evaluated. |

Let N, be'the-number of observations falling in the ith cell. N, is not
multinomial, siﬁée the cells are themselves functions‘bf the observations. But
if we let n, be the number of observations falling in the cells formed by Eij(go)’
where 90 is the true parameter value, the n, are multinomial with cell probabili-
ties pi(Qo,Qo). The primary difficulty in these proofs is the asymptotic eva;ua4

tion of N.-n..
i



We will meet this difficulty with a simple result on weak convergence of
processes. Let S be a separable metric space of real valued functions on a
subset E of euclidean k-space Rk" We assume that S contains the space C(E) of
functions continﬁous on E and that the topology of S is such that convergence
in S to a member of'C(E) is uniform.

Lemma 1. Suppose Xn(-) are random elements of S which converge weakly to
a random element X(-) such that P[X(-) € C(E)]=1. Then ifvgn are random vari-
ables taking values in E and E;* € in prcbability, Xn(gn)—xn(c)+-0 in probabil-
ity. |

Proof. The terminology is that of Billingsley (1968). Consider the random
element (Xn,gn) 6f the separable metric space Ska. Since both marginal distri-
butions converge Wéakly and that of g, converges in probability, Theorem 4.4 of
Billingsley (1968) implies that (Xn,gn) converges weakly on Ska to (X,c). Since
X(-) is continuous w.p. 1 and convergence in S to a continuous limit is uniform,
the function ¢: Ska+ R1 defined by ¢(f,a)=f(a)-f(c) is continuous w.p. 1 with
respect to the distribution of (X,c). Thus by Billingsley's Theorem 5.1, ¢tXn,gn)
converges in law to ¢(X,c). But ¢(X,c) = 0, so we have the result of the lemma.

Let now ui(9,9) be the m-vector with components

d

uij(O,Q) = Eag-pi(e,g) j=1l,...,m

and let Vi(G,G) be the m-vector with components

V]_J (6,8) = ""2— Pl(gsg) .
90
]
Our basic resuit,.due to Roy in the univariate case with a lengthy proof, is the

following.



Lemma 2. If F and the gij satisfy the conditions stated above, and if the

~ A
vij(Q,Q) are - continuous in 8, then when 90 is true

-1/2 o ~
(3) n (N;-n,) = yﬁ'vi(eo,eo)(en-eo)+op(1).

Proof. Let Fn(x) be the empiric df of Xl,...,Xn and Wn(x)=%ﬁ'(Fn(x)—F(xl90))

the empiric df process. Then

- e
v [Ag FL(0-8,°F_(x)]

(4) : .n_l/z(Ni—ni)

- 0 . 0
0] W 00-0,° W (0 hvaia? F(x[0,)-a,°F(x[0 )}

[l

By Taylor's theorem the second term on the right in (4) is

: . m
Vﬁ-{Pi(go’en)_piceo’go)} =/ .Z

* 9 -
; Vij(90,9 ACH Qo)j

1

where 0% lies between 6n and 90. Since Vﬁ'(én—eo) is'boﬁﬁded in probability

(this is actually the only property of én used here) and yij is continuous, this
expression is jﬁst the right side of (3). It remains to show that the first term
on thevright in (4) is op(l). Since gij are continuous and 6n+ 90 in probability,
this will follow if gn+ ¢ in probability implies Wn(gn)-wn(c)=op(1). This is the
result of Lemma 1, but S must be properly chosen. Define a continuous function H
mapping Rk onto fhe unit cube in such a way that the random variables Yi=H(Xi) have

uniform marginal distributions in each direction. If U(u) is the df of any Yiband



Un(u) the empiric df of Yl,...,Yn then the empiric process W;(u)=/ﬁh(Un(u)—U(u))
satisfies Wn(x)=W;(H(x)). The path functions of W; fall in the space Dk of func-

tions on the unit que having only jump discontinuities. -For k=1, Dk is the fa-
miliar space D[O;l] of Billingsley (1968), Chapter 3. For any k it is possible
to define on Dk a metric satisfying the conditions of Lemma 1 under which W; con-
verges weakly to a Gaussian process W* which has continuous paths w.p. 1. The
topological results are due to Neuhaus (1970) while even stronger convergence

results are contained in Dudley (1966). Since H(gn)+H(c) in probability, we

have by Lemma 1 that

W (5 W (€) = WA (H(E))-WA(H()) = o (1).

3. LIMITING DISTRIBUTION OF Tn and Sn

Lemma 2 can be combined with elementary arguments to yield the multivariate
random cells version of the Chernoff-Lehmann theorem. Suppose we have the fol-
lowing regularity conditions in addition to those already stated.

(A1) For i=1,...,m

a

5g-i—-ff(xle) dx = fsﬁz-f(x|9) dx.

(A2) For all 0 the information integrals

9 log £ 5 log £

ij - % oo L(x]0)dx
i j

are finite and the mxm matrix J=||Jijll is positive definite.



(A3) M > m and for any 90 the mXM matrix with rows ui(Qb,Gb)' has rank m.

(A4) The estimators Qn satisfy

~ 12 B4
/n (6,-6,) =n Z J A(xi)+op(,1)

i=1
where
1 f 1 f
A = (g, BRE S
1 m 9=90

(A5) All U and v;; are continuous in both variables.
Condition (A4) is of course satisfied by the maximum likelihood estimators from
ungrouped data in the regular case.

Theorem 1. Under the stated regularity conditions Tn converges in distribu-
tion to the law of a random variable of form (n. |

Proof. Using Taylor's theorem, convergence in law of /ﬁ-(§n=9b) and contin-

uity of u, and v, as well as Lemma 2 we obtain

n V2N np 6,,6,0) = 072 (n;-mp, (6 ,00) 2, ny)
-/ {p; (® .6 )-p,(0,,8.))
= “_1/2(“i”npi)+vi i (6,-0,)

- {u} /ﬁ'(én-eo)+vi VE‘(én-eo)}+op(1)

- n_l/z(ni—npi)—u{ /H'(én-go)+oP(1)’



where the argument 90 is assumed wherever suppressed. Since P; is continuous,

A

pi(Qn,Qn)/pi(90,90)+l in probability. Applying this fact and (A4) gives

- g -ND 1
N;-np; (0,58,) "Ry Y g B
—= = . n Y JTTA(X ) +o_(1)
[np, (0,0 112 [np, 11/ s<1 TP
Py n’ n P; i
which if we define '
Ci(x) = l—pi(Qo,Qo) if x falls in the ith cell
= —pi(Qo,Qo) otherwise

becomes

(5) n'l/z ——= {C; (X )-u} J” A(X )} + o (D).

|| ~13

P

The M quantities (5) for i=1,...,M are clearly asymptotically multivariate normal
by the multivariate central limit theorem. Since Tn is the sum of squares of
these quantities,-if only remains to compute the covariance matrix and investigate
its eigenvaiues. Détails of this are given by Moore (1970) using methods outlined
in section 4 of Watson (1959).

Turning to Sh; we need only_add to the method of proof used above knowledge
of the behavior of the estimators 5; obtained by solving the equations (2). These
estimators were first studied in the univariate case by Watson. The proof, which
depends on Lemma 2, is much the same in the k-variate case. Since Watson did not

publish a proof, we sketch it here. Recall the condition that 90 is understood
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where arguments are suppressed and define B as the Mxm matrix with entries

_ -1/2
Bij = P; uij'

Lemma 3 (Watson). Under the stated regularity conditions

) 1Y ' -1 '
(6) /n (0 -6)) = (B'B)" B q_n+op(1)

/2, i=1,...,M.

' 1
where qa, has components (ni—npi)/(npi)
Proof. Note that B'B is nonsingular by (A3). Note also that (6) is exactly
the asymptotic behavior of maximum likelihood estimators from data grouped in

fixed cells (Cramer (1946), equation 30.3.17). To prove (6), rewrite (2) as

(Ni'nPi (Qn ,9]’1) ) u1J (gn:gn)

1 '/Epi(ﬁn,en)

M ‘/IT (Pl (-g_n 99n) 'Pl (gn :gn) ) A
= .Z —= uij (9 ,9 )-
i=1 pi(Qn,Qn)

M
(7) D
1:

The 1ef£ side of (7) can be expressed as

-~ A

M (nijnpi)uij(gn,gn) . M (Ni~ni) uij(gn’gn)

(8)

i=1  /np, (@ ,6) i=1  /np;(0 .0)

A

M . . u; | (6n,9n)
- 121}/]1_ (pl(gn,gn)-pl) T

p; (G .0 )

Consistency of 5; can be proved as is done for the fixed cell case by Rao (1965),

section 5e.2,,using consistency of On. Routine computations making use of Lemma 2
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in the second term of (8) and Taylor's theorem in the third term show that (8)

is

n.-np, ‘M . Bi'
——= B~ ] [ul /A (0-0)] 2L+ o0 (D).
1 vhp, T =1 /E; P

This is just the jth entry of the vector

(9) : ‘. B'q -B'B vn (6,-0)+ op(l).

Another use of Taylor's theorem shows that the right side of (7) is

(10) ) (6,-6.) .

Il o1
=
I

]

where 0* lies between 6 and 0 . Write
n n n

0n70, = (8,78 - (6,-8,)

and observe that yﬁf(ﬁh—eo) is bounded in probability since all other terms in
the expanded version of (7) are. (10) therefore becomes the jth entry of the

vector
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(11) B'B /n (8,-6)-B'B +n (én,eo) + 0,(1)

and equating (9) and (11) proves the lemma.

Theorem 2. Under the stated regularity conditions the law of Sn converges

2
to XM—m-l'

Proof. Proceeding exactly as in the proof of Theorem 1 with 5; replacing

On where appropriaté gives

n-l/z(Nifnpi(an’é\n)) = n—l/z(ni_npi)—ui a (6-1'1-90) * OP(I)'

Substituting the result of Lemma 3 shows that the vector with components

= -~ = S ..1/2 .
(Ni—npi(Qn,Qn))/[npi(On,Qn)] is equal to

' -1 1
(I-B(B'B) "B') q, * Op(l)

where I is the identity matrix. This is the same result as in the fixed cell

case ([3], equation 30.3.18) and therefore Sn has the limiting distribution

X2 obtained in that case.
M-m-1 .
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